Data sheet

Axial piston pump DPVG

The Liebherr axial piston pumps in the DPVG series are designed as swashplates for closed circuits. The variable displacement pumps are available in nominal sizes ranging from 085 to 280. The nominal pressure of the units is 6,527 psi (450 bar) and the maximum pressure is 7,252 psi (500 bar) absolute.

Thanks to a hydrostatic swashplate design, this variable displacement pump stands out with its high reliability and long service life, even under the toughest of conditions.

The hydrostatic swashplate mount is available for the nominal sizes 085, 140, and 280.

The inverse drive with a swivel angle of 22° is very efficient and has a very high power density. The DPVG is available with the common controls.

A through-drive is possible, as is the configuration of two DPVG pumps to form a multi-circuit pump in a tandem layout.

Valid for:

DPVG 085 DPVG 108 DPVG 140

DPVG 165 DPVG 280

Features:

D series Closed circuit

Control types:

Various control types can be selected

Pressure range:

Nominal pressure $p_N = 6,527 \text{ psi } (450 \text{ bar})$ Maximum pressure $p_{max} = 7,252 \text{ psi } (500 \text{ bar})$

Document identification:

ID number: 11357580 Date of issue: 03/2023

Authors: Liebherr - Abteilung VH13

Version: 1.3

Table of contents

1 T	ype code	3
2 T	echnical data	7
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Table of values Direction of rotation Permitted pressure range Hydraulic fluids Temperature Shaft lip seal Housing flushing Feed pump	7 9 9 11 12 18 18
3 A	activation and control type	20
3.1 3.2 3.3 3.4	Control types Standard hydraulic diagrams Control functions Electrical components	20 21 37 45
4 Ir	nstallation conditions	50
4.1 4.2	General information about project planning Installation variants	50 52
5 D	Dimensions	55
5.13 5.14 5.15 5.16 5.17 5.18	Nominal size 165, mounting flange Nominal size 165, shaft end Nominal size 280 Nominal size 280, mounting flange Nominal size 280, shaft end Through-drive Through-drive - hole open Through-drive - hole closed with cover	55 57 57 58 61 62 63 66 66 68 72 72 73 77 77 78 79
5.19		87

DPV G		/	000		1				Α	0				
1. 2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14	4. 15.
1. Pump typ	Pump type													
D series / pum	p / variabl	le displac	ement							DPV				
2. Type of c	2. Type of circuit					•								
Closed								G						
3. Nominal	size (NS))					•							
								085	108	140	165	28	80	
4. Residual	displace	ement V	g min											
$V_{g min} = 0 cm^3$	/ Enter val	ue in cm ³	³ /rev							•				
5. Activatio	n / cont	rol type	;											
Electro-propor	tional regu	ılation / p	ressure	cut-off										EL - DA
Electro-propor	tional regu	lation							-		•			EL
Hydraulic prop	ortional re	gulation,	depende	nt on st	eering pi	ressure			•		•	ı		SD
Hydraulic prop pressure cut-o		gulation,	depende	nt on st	eering pi	essure /	/			•	•	•	•	SD - DA
Hydraulically a (Hydraulic torq			trol with	pressur	e cut-of	f		-	_	_	•	•	•	TCH
Electrically act				ressure	cut-off			-			•	•	•	TCE
Electrical prop	ortional reg	gulation,	with safe	ety valve	/ press	ure cut-	off		-	-	•		•	ELS - DA
Electrical direc	t control												_	DS
Electrical direc	t control, p	oressure (cut-off							-				DS-DA
Electrical prop	ortional reg	gulation,	with safe	ety valve					•			ı		ELS
Hydraulic spee	d control /	′ mechani	ical strok	ce limitat	tion / pre	essure ci	ut-off				-	ı		DZH-M-DA
6. Design														
										1				
7. Direction	of rotat	ion (vie	wed to	wards	the dr	ive sha	ıft)							
Right									•			ı		R
Left														L

085	108	140	165	280
-----	-----	-----	-----	-----

8. Mounting flange

Diesel engine flange SAE J617a	SAE 1						11
	SAE 2		•				12
	SAE 3						13
	SAE 4						14
Mounting flange SAE J744	SAE C		-	1	-	-	23
	SAE D	ı		•			24
	SAE E	ı	-	1			25
	Ø 160	•	-	1	-	-	31*
Mounting flange ISO 3019-2	Ø 180	-	•	-	-	-	31*
	Ø 200	-	-	-		-	31*
	Ø 224	-	-	-	-		31*

^{*)} Enter mounting flange diameter in the free text field, see chapter 5.

9. Shaft end

Splined shaft	DIN 5480		*	*	•		1
Splined shaft	ANSI B92.1a	•	•	•	-	•	2

^{*)} Enter splined shaft dimensions in the free text field, see chapter 5.

10. Connections

ISO 6162-2 / SAE J518-2, high-pressure connection 6000 psi	A
--	---

11. Add-on parts

Without add-on parts	0	
	•	

12. Gear pump

Without gear pump		•	•	•	•	00
With gear pump $V_g = 24 \text{ cm}^3$, enter the value in cm ³ /rev, without filter and cold start valve	•			-	-	24
With gear pump $V_g = 30 \text{ cm}^3$, enter the value in cm ³ /rev, without filter and cold start valve		•	•	-	-	30
With gear pump $V_g = 40 \text{ cm}^3$, enter the value in cm ³ /rev, without filter and cold start valve	-	•	•		-	40
With gear pump $V_g = 50 \text{ cm}^3$, enter the value in cm ³ /rev, without filter and cold start valve	-	-	-	•	•	50

085	108	140	165	280
-----	-----	-----	-----	-----

13. Through drive

	dard diameter	Fastening thread posi- tion according to SAE	Gearing						
No through	drive								0000
		Type K Basic (2-hole)	ANSI B92.1a						AllD
Ø82.55	SAE A	Type S Basic (4-hole)	5/8 in 9T 16/32DP	-	-	-	-	-	A12D
	0.15.5	Type K Basic (2-hole)	ANSI B92.1a	•	•	•	•		B11D
Ø101./	SAE B	Type S Basic (4-hole)	7/8 in 13T 16/32DP						B12D
Ø101.6	CAEDD	Type K Basic (2-hole)	ANSI B92.1a		•	•	•	•	B21D
	SAE BB	Type S Basic (4-hole)	1 in 15T 16/32DP						B22D
		Type K Basic (2-hole)	ANSI B92.1a			•			C11D
	SAE C**	Type S Basic (4-hole)	1 1/4 in 14T 12/24DP		•	•	•	•	C12D
G107	045.00**	Type K Basic (2-hole)	ANSI B92.1a		•		•		C21D
Ø127	SAE CC** -	Type S Basic (4-hole)	1 1/2 in 17T 12/24DP						C22D
	SAE C**	Type K Basic (2-hole)	DIN 5480 N30x2x14x10E						C31D
		Type S Basic (4-hole)						•	C32D
		Type K Basic (2-hole)	ANSI B92.1a	-					D11D
		Type S Basic (4-hole)	1 3/4 in 13T 8/16DP	-	•		•	•	D12D
		Type K Basic (2-hole)	DIN 5480	-				•	D31D*
6350 (SAE D**	Type S Basic (4-hole)	N40x2x18x10E	-	•		•		D32D*
Ø152.4		Type K Basic (2-hole)	DIN 5480 N45x2x21x10E	-					D31D*
		Type S Basic (4-hole)		-	•		•	•	D32D*
		Type K Basic (2-hole)	DIN 5480	-					D31D*
		Type S Basic (4-hole)	N50x2x24x10E	-					D32D*
		Type K Basic (2-hole)	ANSI B92.1a	-	-	-	-	-	E11D
		Type S Basic (4-hole)	1 3/4 in 13T 8/16DP	-	-	-	-		E12D
<i>α</i> 1/Ε1	045 5**	Type K Basic (2-hole)	DIN 5480	-	-	-	-	-	E31D*
Ø165.1	SAE E**	Type S Basic (4-hole)	N50x2x24x10E	-	-	-	-		E32D*
		Type K Basic (2-hole)	DIN 5480	-	-	-	-	-	E31D*
		Type S Basic (4-hole)	N55x2x26x10E	-	-	-	-		E32D*
go	100 7555	(2-hole)	DIN 5480	-	-	-	-	-	V31D*
Ø200	ISO 3019-2	(4-hole)	N45x2x21x10E	-	-	-	-	•	V32D*
				085	108	140	165	280	
g00./	100 7010 0	(2-hole)	DIN 5480	-	-	-	-	-	W31D*
Ø224	ISO 3019-2	(4-hole)	N55x2x26x10E	-	-	-	-	-	W32D*

^{*)} Enter splined shaft dimensions in the free text field, see chapter 5.

^{**)} Through-drives SAE-C, SAE-CC, SAE-D and SAE-E not possible in conjunction with integrated feed pump.

	085	108	140	165	280
--	-----	-----	-----	-----	-----

14. Valve

High-pressure relief valve with feed function		•	•		•	NS-DB
High-pressure relief valve with feed function and feed pressure valve	-	-	-	-	-	NS-DB-DS

15. Sensors

Without sensor	•	•	•	•	0
With angle sensor					W

■ = Available

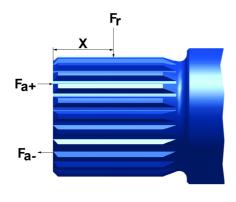
□ = On request

- = Not available

Note

Contact addresses for queries are provided on the back of this document.

2.1 Table of values

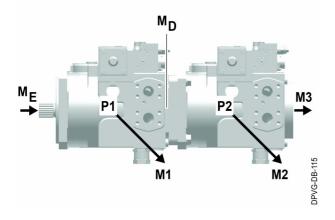

Nominal size			085	10	08	140		165	280	
Displacement volume	V _{g max}	cm ³	88.4	107.7		140.2		167.8	283.4	
Max. speed at V _{g max}	n _{max}	rpm	3300	30	00	2850		2700	2500	
Volume flow at n _{max} and V _{g max}	qv _{max}	l/min	291	323		400		453	709	
Drive power at qv _{max} and Δp = 430 bar	p _{max}	kW	209	232		287		325	508	
Drive torque at V _{g max} and Δp = 430 bar	M _{max}	Nm	604	737		959		1149	1940	
Torsional rigidity		aft 5480	W35	W40	W45	W40	W50	W45	W55 (Yoke)	W55 (Cradle)
	Nm,	/rad	103003	177000	205550	195300	254330	255250	471010	409310
Driving gear moment of inertia	J_{TW}	kgm ²	0.0101	0017		0.024		0.03	0.0693	
Weight (approx.)	m	kg	63	6	9	7	9	96	134	

Note

The stated values (maximum values) are theoretical values, rounded, and without efficiencies or tolerances.

2.1.1 Maximum radial and axial load of the driving shaft

Nominal size	085	108	140	165	280		
Max. radial force	F _{r max}	N	Values upon request				
Max. axial force	F _{a± max}	N	Values upon request				

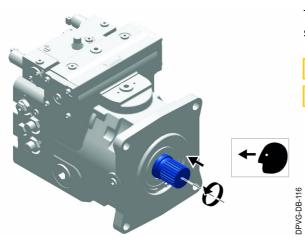


Note

The radial and axial loads depend on the load cycle, e.g. pressure, rpm and direction of force. If planning a belt drive or continuous axial and/or radial forces are expected, please contact Liebherr.

2.1.2 Maximum input and through drive torques

Nominal size	085	108	140	165	280			
Max. torque of driving shaft input (installed without lateral force) at shaft end DIN 5480	M _{E max}	Nm	Values upon request					
Max. torque of through drive	M _{D max}	Nm						

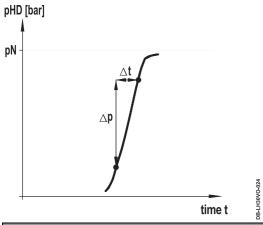

M1	Torque of axial piston pump 1
M2	Torque of axial piston pump 2
M3	Torque of axial piston pump 3
P1	Axial piston pump 1

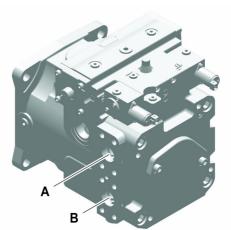
P2	Axial piston pump 2
M _E ¹	Input torque
M_D^2	Through drive torque
-	-

- 1) $M_E = M1+M2+M3$ $M_E < M_{E max}$
- 2) $M_D = M2 + M3$ $M_D < M_{D \text{ max}}$

2.2 Direction of rotation

	DPV	G		/	000		1				Α	0				
ſ	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.


The direction of rotation is stated with view of the driving shaft, as shown in the figure.


right = clockwise

= anti-clockwise

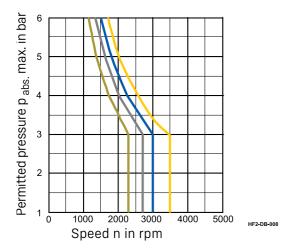
2.3 Permitted pressure range

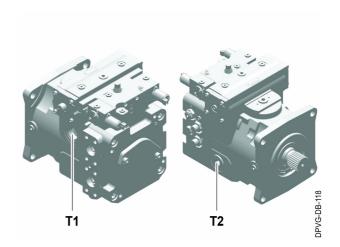
2.3.1 Operating pressure

Operating pressure at connection A / B			
Nominal size	085 to 280		
Minimum pressure**	pHD _{min}	bar	20
Nominal pressure (fatigue resistant)	pHD _N	bar	450
Maximum pressure (single operating period)	pHD _{max}	bar	500
Single operating period at maximum pressure pHD _{max}	t	S	< 1
Total operating period at maximum pressure pHD _{max}	t	OH*	300
Rate of pressure change	RA	bar/s	17000

*) OH = operating hours

**) There must be minimum pressure in the working circuit at port A to ensure adequate lubrication of the driving gear in all swivel angles during operation.


DANGER


Failure of the fastening screws at working connection A!

Danger to life.

Use fastening screws of strength category 10.9.

2.3.2 Housing, leakage oil pressure

Characteristic curve	Nominal size	Shaft diameter (mm)
	085	40
	108	45
_	165, 140	50, 56
	280	60

Leakage oil pressure at connection T1/T2						
Nominal size			085 to 280			
Permanent absolute leakage oil pressure	p _L	bar	3			
Maximum absolute pressure	pL _{max}	bar	6*			

*) Short pressure peaks of max. 10 bar abs. are permitted (t < 0.1 s).

Note

The pressure in the axial piston unit must always be higher than the external pressure on the shaft lip seal.

2.4 Hydraulic fluids

2.4.1 General information

Selection of the appropriate hydraulic fluid is significantly influenced by the anticipated operating temperature relative to the ambient temperature, which is equivalent to the tank temperature.

ATTENTION

You must not mix different mineral oil hydraulic fluids!

Minimum required quality

Specification
LH-00-HYC3A
LH-00-HYE3A

Note

For additional information, see: www.liebherr.com (brochure: Lubricants and operating fluids) Alternatively: Contact lubricants@liebherr.com.

2.4.2 Fill quantity

Nominal size	Fill quantity
085 to 280	Values upon request

Note

Before commissioning, the hydraulic unit must be filled with hydraulic fluid and vented. This must be checked during operation and after long downtimes and repeated if necessary.

2.4.3 Filtering

- Filtering of the hydraulic fluid is necessary to maintain the specified purity class "21/17/14 according to ISO 4406" under all circumstances.
- The hydraulic fluid is filtered by the device-specific use of oil filters in the hydraulic system.
- The cleaning and maintenance intervals for the oil filters and the entire oil circuit depend on use of the unit: see the device-specific operating instructions.

2.5 Temperature

Note

The optimum operating range of the hydraulic fluid of $16-36 \text{ mm}^2/\text{s}$ for Liebherr Hydraulic HVI (ISO VG 46) is from 32° to 62° C.

If the axial piston unit is operated in the optimum operating range of the hydraulic fluid within the permitted operating conditions and operating limits, it is low-wear and is protected against temperature-dependent ageing. From a viscosity $< 11 \text{ mm}^2/\text{s}$ (for Liebherr Hydraulic HVI (ISO VG 46) = 80 °C), a halving of the service life of the hydraulic fluid must be assumed for every 10 °K increase in temperature.

If the optimum operating range cannot be met, a hydraulic fluid with a more suitable viscosity range must be selected or the hydraulic system must be preheated or cooled.

To prevent temperature shocks, the temperature difference between the hydraulic fluid and the axial piston unit must be kept to less than 25 °C. This can be achieved by, among other things, a continuous flow through all axial piston units in the hydraulic system.

2.5.1 Operating limits

Maximum values:

Maximum leakage oil temperature: 115 °C.

ATTENTION

The temperature should be assumed to be highest in the drive shaft bearing area (rotary shaft lip seal and bearing). Experience has shown this temperature to be 10-15 °K higher than the leakage oil temperature.

Low temperatures: (for additional information see: 2.5.2 Low temperatures, Page 12)

Note

The operating limits of Liebherr hydraulic fluids are provided in the viscosity chart included below to allow users to make an informed choice. (for additional information see: 2.5.6 Viscosity chart, Page 17)

2.5.2 Low temperatures

ATTENTION

When temperatures drop below the freezing point, the sealing lip of the rotary shaft lip seal could freeze if it becomes wet or frosted. This can cause the sealing lip to tear off when the axial piston unit is started. The risk must be prevented by preheating/thawing the rotary shaft lip seal/the shaft.

Note

At temperatures at which there is already a risk of hardening from freezing, the frictional heat may be sufficient to keep the seal elastic or to bring it to a functional state quickly enough after the start of movement.

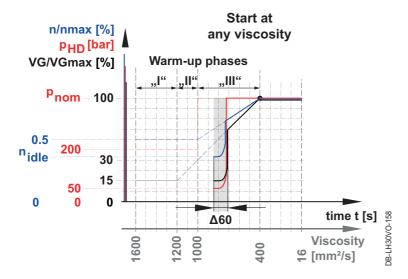
Overview

Temperature [°C]	Phase	Viscosity [mm ² /s]	Note
< -50 °C	Idle state	_*	No storage or operation permitted
< -40 °C	Idle state	_**	No operation permitted, preheat to at least -40 °C, select appropriate hydraulic fluid

*) Idle state < -50 °C

ATTENTION

Temperatures < -50 °C on the system = no operation of the axial piston unit permitted. Risk of damaging the sealing elements of the axial piston unit. Avoid temperatures < -50 °C.


**) Idle state < -40 °C

ATTENTION

Temperatures < -40 °C on the system = no operation of the axial piston unit permitted. Functioning of the sealing elements in the axial piston unit is not guaranteed at temperatures < -40 °C. Preheat the axial piston unit and tank to at least -40 °C and use Liebherr Hydraulic Plus Arctic/Liebherr Hydraulic FFE 30 hydraulic fluid with a viscosity < $1600 \text{ mm}^2/\text{s}$. (for additional information see: 2.5.6 Viscosity chart, Page 17)

Regardless of the viscosity $< 1600 \text{ mm}^2/\text{s}$, the axial piston unit must be operated for at least 60 s under the following conditions before entering the cold start including the warm-up phases or on warm start:

- Operating pressure range: p_{HD min} ≤ p_{HD} ≤ 50 bar
- Speed: n_{min} ≤ n ≤ 1000 rpm, or idle speed of the drive motor*
- Displacement volume: $V_{g min} \le V_{g} \le 15\%$ of $V_{g max}$
- · Do not move any of the equipment.
- *) When using a drive with higher speeds than required in the conditions (e.g. an electric motor), please consult Liebherr, stating the potential speed(s).

After the 60 s have elapsed, determine the viscosity using the available temperature values and the viscosity chart, select the appropriate warm-up phase and operate the axial piston unit in the defined period and appropriate conditions (see Warm-up phases).

Overview

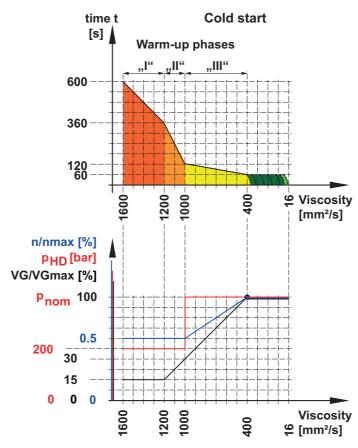
Temperature [°C]	Phase	Viscosity [mm ² /s]	Note
> -40 °C	Cold start	1600-400	The current viscosity of the hydraulic fluid before start-up determines the type of start. In the range of 1600-400 [mm ² /s], it is a cold start. Entry into the warm-up
. 40 0	cota start	1000 400	phase must be selected according to the viscosity and the further warm-up phases must be run through according to the time specifications and operating conditions.
	Warm-up phase "I"	1600-1200	Observe conditions and measures (see Warm-up phase "I")
	Warm-up phase "II"	1200-1000	Observe conditions and measures (see Warm-up phase "II")
For additional information, see Viscosity chart	Warm-up phase "III"	1000-400	Observe conditions and measures (see Warm-up phase "III")
	Normal operation	400-16*	Axial piston unit, fully loadable (see Normal operation)
	Optimum operating range	36-16	Axial piston unit, fully loadable (see Normal operation)

^{*)} At maximum leakage oil temperature, the viscosity must not fall below $8 \text{ mm}^2/\text{s}$ (for a short period, i.e. < 3 minutes, it can be $7 \text{ mm}^2/\text{s}$).

2.5.3 Cold start with subsequent warm-up phases

ATTENTION

Before cold start, the viscosity* must be determined on the basis of the oil temperature (e.g. tank temperature) in order to avoid damage to the axial piston units from excessive viscosity* of the hydraulic fluid. At a viscosity* > 1600 mm²/s, the hydraulic system must be preheated.


Using the determined viscosity*, the type and duration of the warm-up must be followed, using the cold start chart**.

*) (for additional information see: 2.5.6 Viscosity chart, Page 17)

The following conditions apply:

- Viscosity: 1600-1200 mm²/s = operate the axial piston unit for 600-360 s with measures listed for Warm-up phase "I".
- Viscosity: 1200-1000 mm²/s = operate the axial piston unit for 360-120 s with measures listed for Warm-up phase "II".
- Viscosity: $1000-400 \text{ mm}^2/\text{s}$ = operate the axial piston unit for 120-60 s with measures listed for Warm-up phase "III".
- Viscosity: $400-16 \text{ mm}^2/\text{s} = \text{operate the axial piston unit for } 60 \text{ s with measures listed for "Warm start". This means that even at <math>\leq 400 \text{ mm}^2/\text{s}$, the measures must be applied for at least 60 s.

**) Cold start chart

2.5.4 Warm-up phases

Note

Depending on the current viscosity, continue with the corresponding warm-up phase after the cold start. In the subsequent warm-up phases, the operating parameters may be increased to allow the hydraulic system to warm up rapidly.

Warm-up phase " I "

Condition:

• Viscosity: $1600-1200 \text{ mm}^2/\text{s}$ = operate the axial piston unit with measures listed below until a viscosity of $1200 \text{ mm}^2/\text{s}$ is reached.

Measures:

- Operating pressure range: $p_{HD \ min} \le p_{HD \ Warm-up} \, "I" \le 200 \ bar$
- Speed: n_{min} ≤ n_{Warm-up "I"} ≤ 50% of n_{max}
- Displacement volume: $V_{g \text{ min}} \le V_{g \text{ Warm-up "I"}} \le 15\% \text{ of } V_{g \text{ max}}$

Warm-up phase " II "

Condition:

 Viscosity: 1200-1000 mm²/s = operate the axial piston unit with measures listed below until a viscosity of 1000 mm²/s is reached.

Measures:

- Operating pressure range: p_{HD min} ≤ p_{HD Warm-up} "_{II}" ≤ 200 bar
- Speed: $n_{min} \le n_{Warm-up "II"} \le 50\%$ of n_{max}
- Displacement volume: $V_{g min} \le V_{g Warm-up "II"} \le 15-30\%$ of $V_{g max}$

Warm-up phase "III"

Condition:

• Viscosity: $1000-400 \text{ mm}^2/\text{s} = \text{operate the axial piston unit with measures listed below until a viscosity of } 400 \text{ mm}^2/\text{s} \text{ is reached.}$

Measures:

- Operating pressure range: p_{HD min} ≤ p_{HD Warm-up} "III" ≤ p_{HD max}
- Speed: n_{min} ≤ n_{Warm-up} "III" ≤ 50% of n_{max}
- Displacement volume: $V_{g min} \le V_{g Warm-up}$ "III" $\le 30-100\%$ of $V_{g max}$

Warm start

Condition:

Viscosity: 400-16 mm²/s = operate the axial piston unit for at least 60 s, even at viscosity < 400 mm²/s, with measures listed below.

Measures:

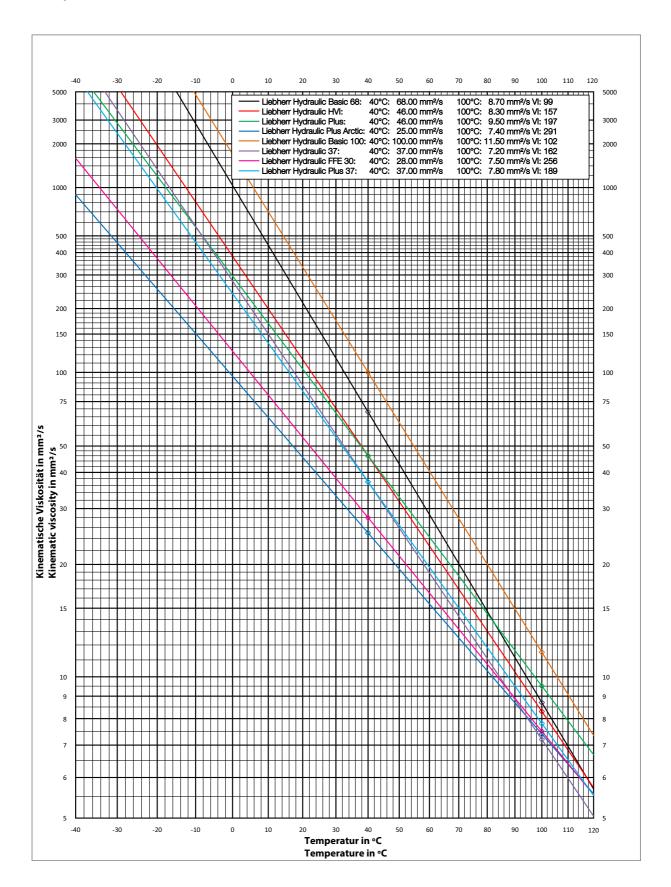
- Operating pressure range: p_{HD min} ≤ p_{HD} ≤ 50 bar
- Speed: n_{min} ≤ n ≤ 1000 rpm, or idle speed of the drive motor
- Displacement volume: $V_{q \text{ min}} \le V_{q} \le 15\%$ of $V_{q \text{ max}}$

2.5.5 Normal operation

Note

Optimum operating range: 16-36 mm²/s

The viscosity must not fall below $8 \text{ mm}^2/\text{s}$ (for a short period, thud < 3 minutes, $7 \text{ mm}^2/\text{s}$) at maximum leakage oil temperature.


Note

In the viscosity range of 400-8 mm²/s, the axial piston unit can be put under full load.

- Operating pressure range: $p_{HD \text{ min}} \le p_{HD} \le p_{HD \text{max}}$
- Speed: $n_{min} \le n \le n_{max}$
- Displacement volume: $V_{G \text{ min}} \le V_{G} \le V_{g \text{ max}}$

2.5.6 Viscosity chart

2.6 Shaft lip seal

2.6.1 General information

The rotary shaft lip seals (RWDR) are special sealing elements which permit a specific housing pressure. In order to ensure that the tribological system functions optimally, the operating conditions must be adhered to.

Sealing edge temperature varies due to the following factors in the housing:

- Circumferential speed
- Hydraulic fluid temperature
- Lubricating medium
- Pressure build-up

The sealing edge temperature could be 20 °C to 40 °C above the leakage oil temperature of a hydraulic axial piston unit.

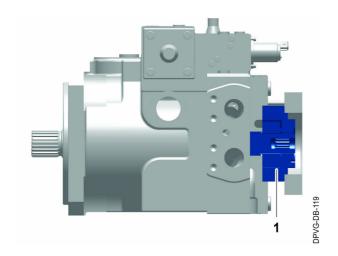
2.7 Housing flushing

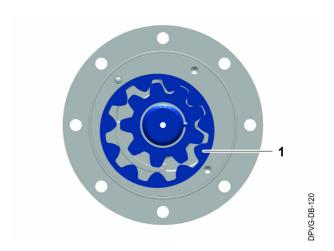
Various operating conditions, e.g. a very low flow rate over a longer period of time, could cause a critical temperature rise in the housing: see chapter 2.8.1.

If this is the case, the housing must be flushed, so the "hot" hydraulic oil is directed to an external cooler where it cools down and from where it is fed back into the hydraulic system.

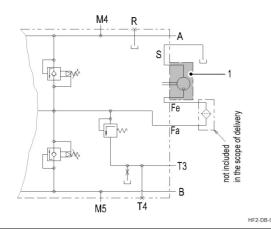
The flushing volume qV in L/min is to be individually set for each nominal size in connection with the application and is the responsibility of the device or system manufacturer.

2.8 Feed pump


DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.



Note


A feed pump can be implemented only in combination with through-drive = B11D, B11G or 0000. A joint feed pump on hydraulic pump 2 is recommended for multi-circuit pumps in tandem design, see chapter 5.14.

- 00 Without feed pump
- With feed pump (V_g = 24 cm³), without filter and cold-start valve
- With feed pump ($V_g = 30 \text{ cm}^3$), without filter and cold-start valve
- With feed pump ($V_q = 40 \text{ cm}^3$), without filter and cold-start valve
- **50** With feed pump (V_q = 50 cm³), without filter and cold-start valve

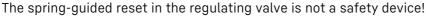
2.8.1 Hydraulic diagram with feed pump

1	Feed pump	-	-

3.1 Control types

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note



For each control type or function, only one nominal size is illustrated, typically nominal size 280. Special applications and designs are not included in this chapter.

Always use the information from the installation drawing provided or contact Liebherr.

The following applies to all control types:

DANGER

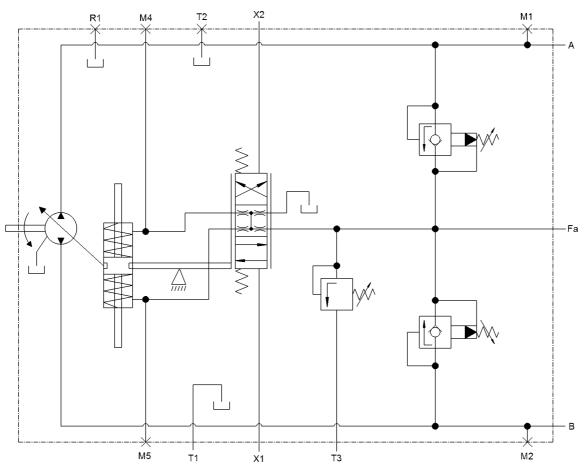
Contaminants in the hydraulic system such as chips or residual dirt from parts of the device or system can cause blockages at undefined points of various control components.

Under some circumstances, the machine operator's specifications can no longer be implemented. It is the responsibility of the manufacturer of the device or system to install a safety device e.g. an emergency stop.

The following modular control types can be ordered for the DPVG series:

3.1.1 Mechanical-hydraulic control

- SD- control, see chapter 3.2.1
- SD-DA- control, see chapter 3.2.2
- SD-DA1- control, see chapter 3.2.3
- TCH- control, see chapter 3.2.4 / see chapter 3.2.5
- DZH-M-DA- control, see chapter 3.2.16


3.1.2 Electric-hydraulic control

- EL- control, see chapter 3.2.7
- EL-DA- control, see chapter 3.2.8
- EL-DA1- control, see chapter 3.2.9
- ELS- control, see chapter 3.2.10
- ELS-DA- control, see chapter 3.2.11
- ELS-DA1- control, see chapter 3.2.12
- TCE- control, see chapter 3.2.13 / see chapter 3.2.14
- DS-DA- control, see chapter 3.2.15
- DS-DA1- control, see chapter 3.2.16

Further control types are available upon request.

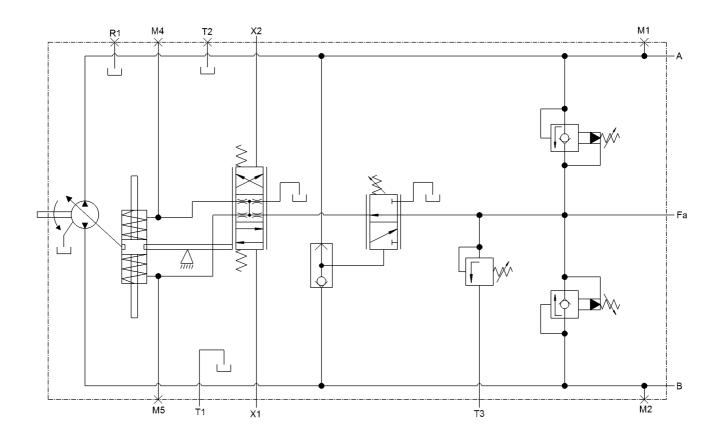
3.2 Standard hydraulic diagrams

3.2.1 SD- control

HF	2-	D	В	-0	Z

X1, X2	Steering pressure connection ISO 9974-1	T2	Oil drain ISO 9974-1
A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
T1	Leakage oil connection ISO 9974-1	-	-

Note


X1 switched, direction of rotation: R = Oil outlet at connection A,

direction of rotation: L = Oil outlet at connection B

X2 switched, direction of rotation: R = Oil outlet at connection B,

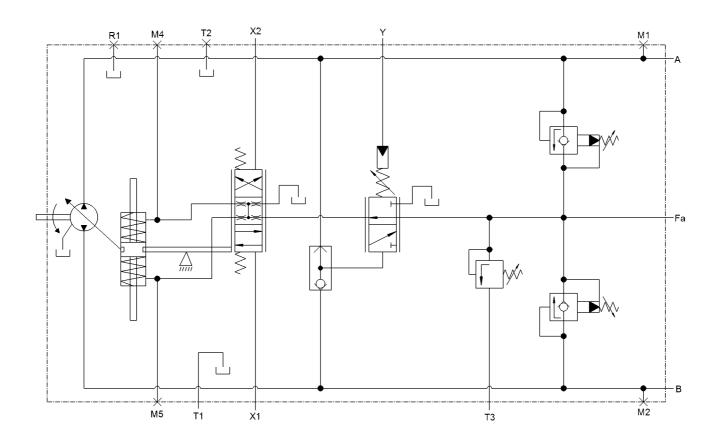
direction of rotation: L = Oil outlet at connection A

3.2.2 SD-DA- control

HF2-DB-024

X1, X2	Steering pressure connection ISO 9974-1	T2	Oil drain ISO 9974-1
A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
Rl	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
T1	Leakage oil connection ISO 9974-1	-	-

Note

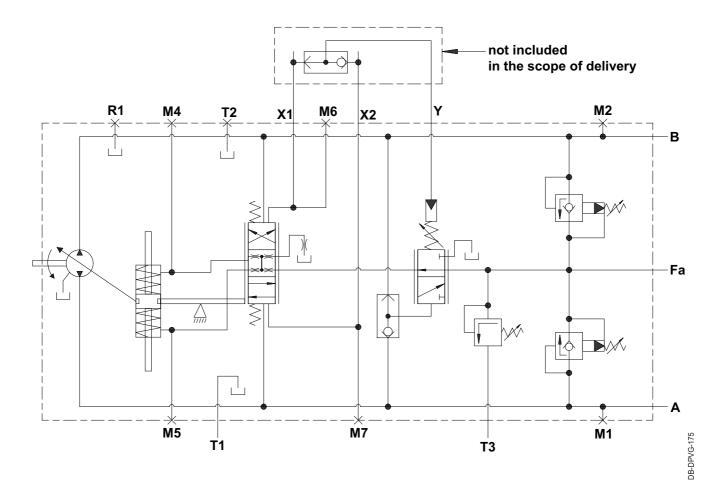


X1 switched, direction of rotation: R = Oil outlet at connection A, direction of rotation: L = Oil outlet at connection B

X2 switched, direction of rotation: R = Oil outlet at connection B,

direction of rotation: L = Oil outlet at connection A

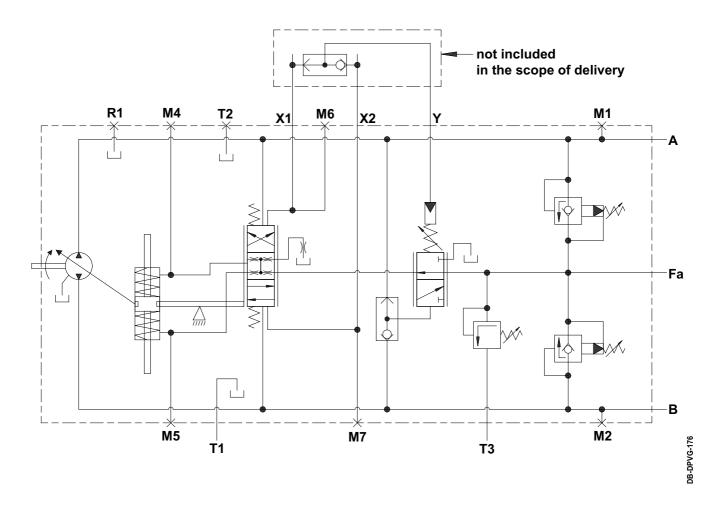
3.2.3 SD-DA1- control


HF2-DB-025

X1, X2	Steering pressure connection ISO 9974-1	T1	Leakage oil connection ISO 9974-1
Y	DA1 override signal	T2	Oil drain ISO 9974-1
A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1

Note

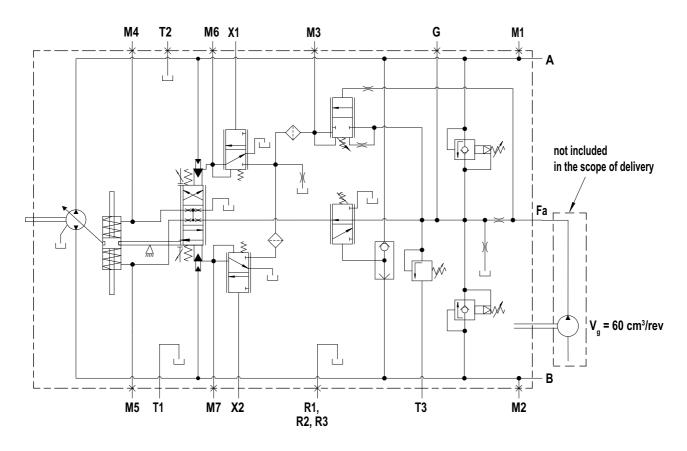
3.2.4 TCH- control, anti-clockwise rotation



X1, X2	Steering pressure connections ISO 9974-1	T1, T2	Leakage oil connections ISO 9974-1
A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Υ	DA1 override signal (weighed) ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
S	Suction port feed pump ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	-	-

Note

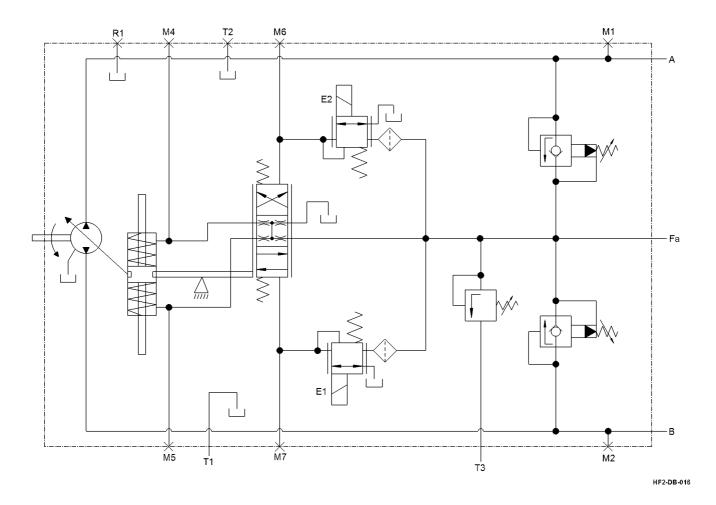
3.2.5 TCH- control, clockwise rotation



X1, X2	Steering pressure connections ISO 9974-1	Т3	Return for feed pressure ISO 9974-1
A, B	Working connections SAE J 518	M1, M2	High pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
Y	DA1 override signal (weighed) ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
T1, T2	Leakage oil connections ISO 9974-1	Fa	Feed pressure connection ISO 9974-1

Note

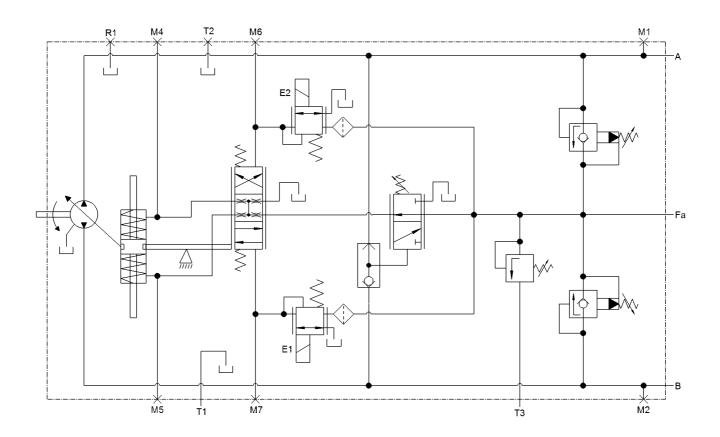
3.2.6 DZH-M-DA- control


DB-DPVG-161

X1, X2	Steering pressure connections ISO 9974-1	Т3	Return for feed pressure ISO 9974-1
A, B	Working connections SAE J 518	M1, M2	High pressure measuring connections ISO 9974-1
R1, R2, R3	Vent connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
G	Pressure connection for auxiliary circuits ISO 9974-1	M3, M6, M7	Steering pressure measuring connections ISO 9974-1
T1, T2	Leakage oil connections ISO 9974-1	Fa	Filter output ISO 9974-1

Note

3.2.7 EL- control



A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
T1	Leakage oil connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T2	Oil drain ISO 9974-1

Note

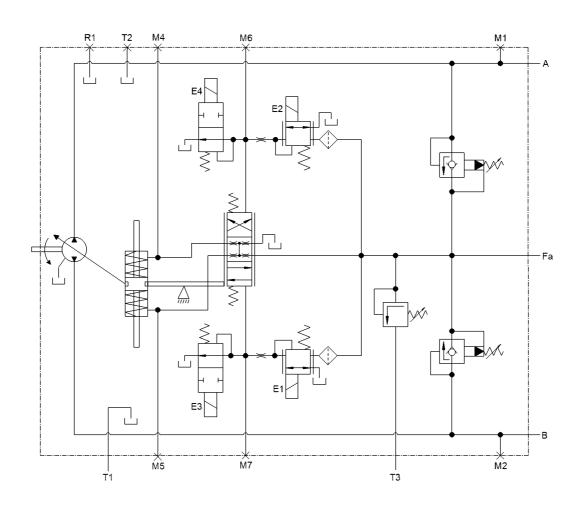
3.2.8 EL-DA- control

HF2-DB-017

A, B	Working connections SAE J 518	Т3	Return for feed pressure ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
T1	Flushing connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T2	Tank connection ISO 9974-1

Note

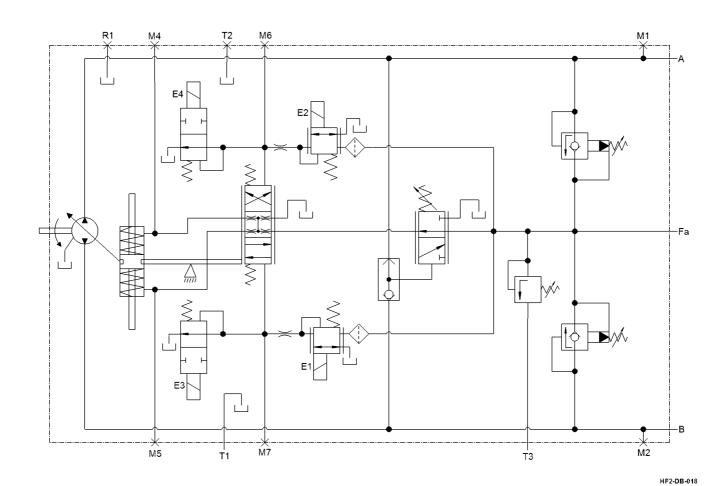
3.2.9 EL-DA1- control


HF2-DB-026

A, B	Working connections SAE J 518	M4, M5	Adjusting pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	Y	DA1 override signal ISO 9974-1
T1, T2	Tank connection ISO 9974-1	-	-
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	Т3	Return for feed pressure ISO 9974-1
E5	Rotation angle sensor to ISP ID.No. 11118356 Connector 3-pin, DT04-3P Deutsch Co.	M1, M2	High pressure measuring connections ISO 9974-1

Note

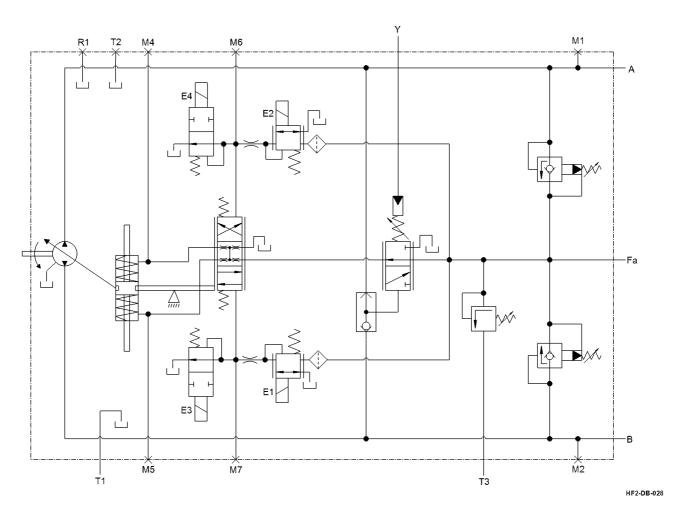
3.2.10 ELS- control


HF2-DB-027

A, B	Working connections SAE J 518	M4, M5	Adjusting pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	1	-
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T1, T2	Tank connection ISO 9974-1
E3, E4	Shut-off valve, plug-in terminal: Deutsch connector DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm	Т3	Return for feed pressure ISO 9974-1
E5	Rotation angle sensor to ISP ID.No. 11118356 Connector 3-pin, DT04-3P Deutsch Co.	M1, M2	High pressure measuring connections ISO 9974-1

Note

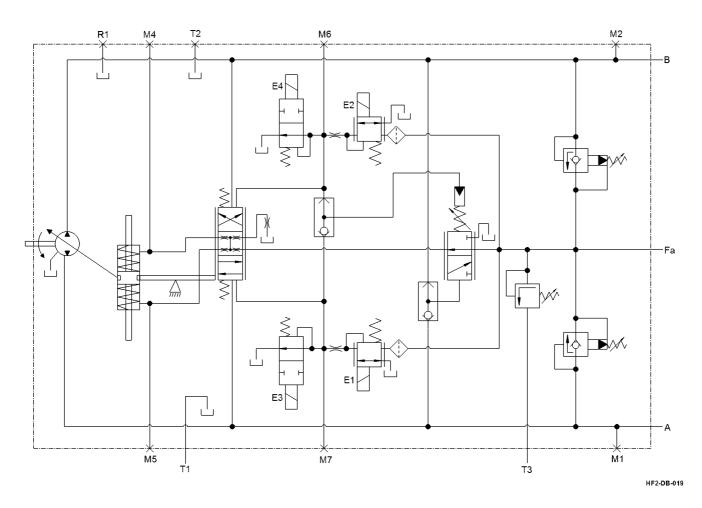
3.2.11 ELS-DA- control



A, B	Working connections SAE J 518	M4, M5	Adjusting pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	-	-
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T1, T2	Tank connection ISO 9974-1
E3, E4	Shut-off valve, plug-in terminal: Deutsch connector DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm	Т3	Return for feed pressure ISO 9974-1
E5	Rotation angle sensor to ISP ID.No. 11118356 Connector 3-pin, DT04-3P Deutsch Co.	M1, M2	High pressure measuring connections ISO 9974-1

Note

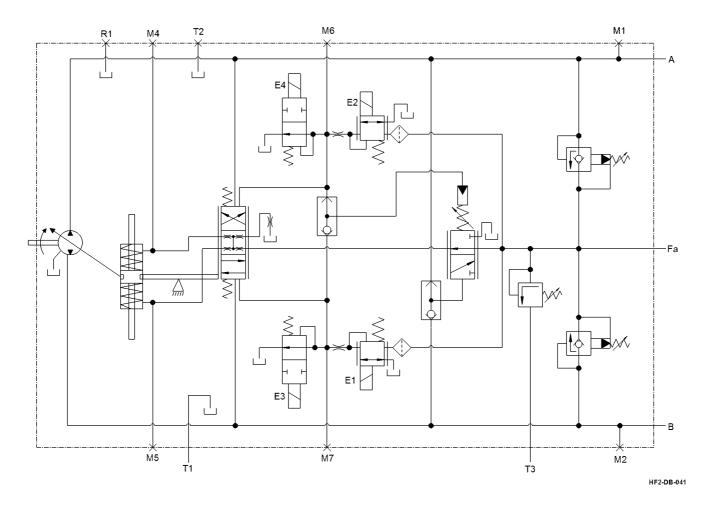
3.2.12 ELS-DA1- control



A, B	Working connections SAE J 518	M4, M5	Adjusting pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	Y	DA1 override signal ISO 9974-1
T1, T2	Tank connection ISO 9974-1	M1, M2	High pressure measuring connections ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug, 2-pin, PWM= 100 Hz, U= 24V, Imax.= 750 mA	Т3	Return for feed pressure ISO 9974-1
E3, E4	Shut-off valve, plug-in terminal: Deutsch connector DT04-2P, IG=0.585 A-100% ED UN=24V, R=25 Ohm		-

Note

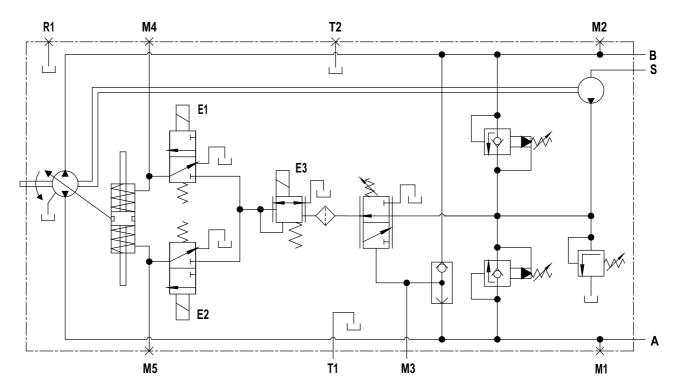
3.2.13 TCE- control, anti-clockwise rotation


A, B	Working connections SAE J 518	M1, M2	High pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T1, T2	Tank connection ISO 9974-1
E3, E4	Shut-off valve, plug-in terminal: Deutsch connector DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm		Oil return for feed pressure valve ISO 9974-1

Note

Magnet E1 switched, direction of rotation: L = Oil outlet at connection B Magnet E2 switched, direction of rotation: L = Oil outlet at connection A

3.2.14 TCE- control, clockwise rotation

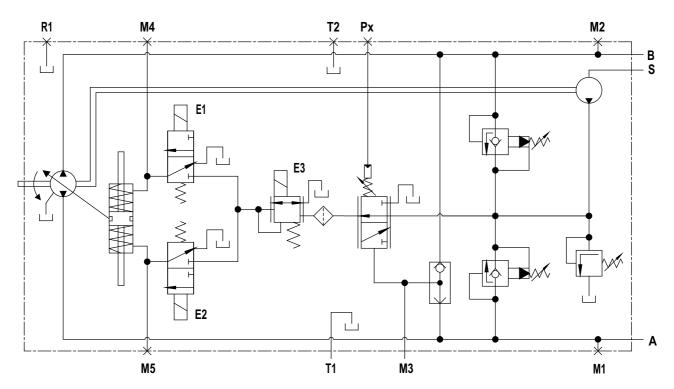

A, B	Working connections SAE J 518	M1, M2	High pressure measuring connections ISO 9974-1
R1	Vent connection ISO 9974-1	M4, M5	Adjusting pressure measuring connections ISO 9974-1
Fa	Feed pressure connection ISO 9974-1	M6, M7	Steering pressure measuring connections ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA	T1, T2	Tank connection ISO 9974-1
E3, E4	Shut-off valve, plug-in terminal: Deutsch connector DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm		Oil return for feed pressure valve ISO 9974-1

Note

Magnet E1 switched, direction of rotation: R = Oil outlet at connection A Magnet E2 switched, direction of rotation: R = Oil outlet at connection B

3.2.15 DS-DA- control

DPVG-DB-110


A, B	Working connections SAE J 518	T1, T2	Tank connection ISO 9974-1
R1	Vent connection ISO 9974-1	S	Suction port ISO 9974-1
E1, E2	Switching valve, Deutsch plug-in termi- nal DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm	M1, M2, M3	High pressure measuring connections ISO 9974-1
E3	Pressure control valve, Deutsch plug-in terminal DT04-2P, PWM = 100 Hz, UN=24V, Imax = 750 mA	M4, M5	Adjusting pressure measuring connections ISO 9974-1

Note

Magnet E1 switched, direction of rotation: L = Oil outlet at connection A Magnet E2 switched, direction of rotation: L = Oil outlet at connection B

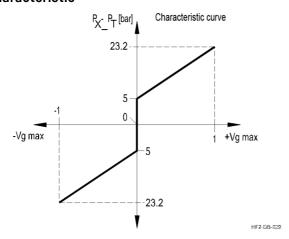
3.2.16 DS-DA1- control

DPVG-DB-112

A, B	Working connections SAE J 518	S	Suction port ISO 9974-1
R1	Vent connection ISO 9974-1	M1, M2, M3	High pressure measuring connections ISO 9974-1
E1, E2	Switching valve, Deutsch plug-in terminal DT04-2P, IG=0.58 A-100% ED UN=24V, R=25 Ohm	M4, M5	Adjusting pressure measuring connections ISO 9974-1
E3	Pressure control valve, Deutsch plug-in terminal DT04-2P, PWM = 100 Hz, UN=24V, Imax = 750 mA	Px	DA1 override signal ISO 9974-1
T1, T2	Tank connection ISO 9974-1	-	-

Note

Magnet E1 switched, direction of rotation: L = Oil outlet at connection A Magnet E2 switched, direction of rotation: L = Oil outlet at connection B

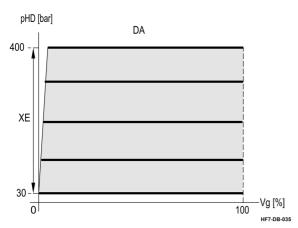

3.3 Control functions

- SD- function / steering-pressure proportional hydraulic regulation, see chapter 3.3.1
- DA- function / pressure cut-off, see chapter 3.3.2
- DA1- function / pressure cut-off with override, see chapter 3.3.3
- TCH- function / hydraulically activated torque control with pressure cut-off, see chapter 3.3.4
- DZH- function / hydraulically controlled speed regulation with mechanical stroke limitation and with pressure cut-off, see chapter 3.3.4
- EL-function / electro-proportional regulation, see chapter 3.3.6
- ELS- function / electro-proportional regulation with safety valve, see chapter 3.3.7
- TCE- function / electrically activated torque control with pressure cut-off, see chapter 3.3.8
- DS- function / direct control, see chapter 3.3.9

3.3.1 SD- function

SD- control is suitable for applications which require a proportionally controlled volume flow.

Characteristic


By adjusting the drive from $V_{g min}$ towards $V_{g max}$, the pump swivels to a larger displacement volume V_{g} with increasing SD- steering pressure at X1 / X2.

If X1 / X2 is activated, the spool moves in the control unit. By means of mechanical transmission via an adjusting lever, the deflection directly leads to the swivel yoke / pan-tilt, for pivoting the swivel yoke / pan-tilt against the spring force of the return springs, in $V_{q max}$ direction.

If the activating signal at X1 / X2 is weakening, missing or defective, the pump swivels towards V_{a min}.

3.3.2 DA- function

Characteristic

The DA pressure control ensures that the minimization or limitation of the volume flow of the axial piston unit upon reaching a permanently set high pressure value pHD. Swivelling in the direction of $V_{g\ min}$ protects the hydraulic system from damage and overload.

Swivelling continues in direction $V_{g\ min}$ only until the volume flow of the axial piston unit exactly matches the consumer need at this pressure stage.

With its function, the pressure control ensures that the pressure is kept constant even when the volume flow in the system changes. This compensates all internal and external leakage oil losses.

XE setting range approx. 30 - 400 bar.

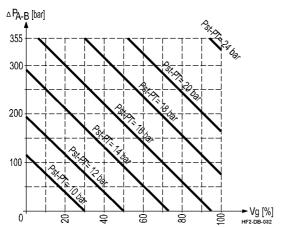
Options

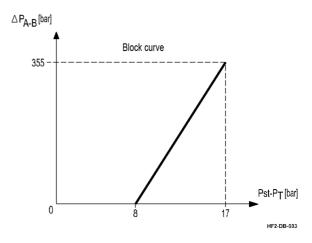
- Additional internal design measures for vibration damping on request.
- Pressure cut-off with override function: see chapter 3.3.3

3.3.3 DA1- function

In the closed circuit, the override function DA1 corresponds to a two-stage pressure cut-off with two pressure stages.

- Pressure stage 1, e.g.: 250 bar, or
- Pressure stage 2, e.g.: 400 bar


The DA1- function on the DA- axle in the pressure control has the task of overriding the set DA- cut-off pressure of pressure stage 1 (e.g. 250 bar) via an externally supplied steering pressure pY-pT at port Y and thereby increasing the high pressure to the set DA- cut-off pressure of pressure stage 2 (e.g. to 400 bar).


It is therefore suitable for systems or devices that need a controlled way to increase torque or are subject to a multiple use. Examples are working hydraulics in wheeled excavators and their driving hydraulic system.

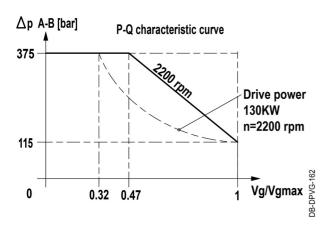
3.3.4 TCH- function

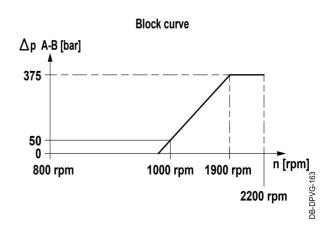
In the TCH function, the displacement volume V_g of the hydraulic pump can be set in several stages dependent on the steering pressure at X1 / X2- (pst-pT) and proportional to the high pressure pHD. In this manner, constant rotational speeds of the rotary ring are realized, while at the same time being able to limit the maximum power consumption.

Characteristic

With increasing steering pressure at X1 / X2, the hydraulic pump swivels in the direction $V_{g max}$ and at the same time with increasing pressure difference ΔP_{A-B} it swivels in the direction $V_{g min}$ (See diagram)

The respective high pressure is fed back to the pilot control valve and counteracts the control signal.


When the drive is stationary, the pressure differential ΔP_{A-B} can be established in the system in proportion to the control signal at X1 / X2, e.g. to hold a superstructure when working on a slope. (See block curve)


The TCH function is combined with the DA function (see chapter 3.3.2) and is particularly suitable for e.g. turntable controls.

3.3.5 DZH- function

Depending on the drive speed, the steering pressure is generated continuously in proportion to the speed.

Characteristic

The generated volume of the feed pump flows through a measuring orifice via the "FA" port.

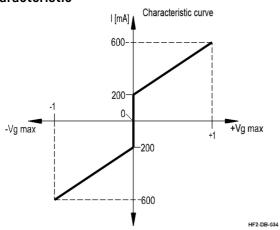
A "delta p" pressure is generated at this measuring orifice, which is reported to the pressure booster. This booster translates this into a steering pressure which is proportional to the "delta p" at the measuring orifice and therefore also proportional to the speed.

When steering pressure is applied to the piston of the servo control, the pump swivels out proportionally. An increasing drive speed produces a larger swivel angle.

The operating pressure acts on the servo control via the pistons and causes the pump to swivel back. An increasing operating pressure produces a smaller swivel angle.

The applied operating pressure thereby counteracts the applied speed-dependent steering pressure. This provides the speed-dependent pressure control (block curve).

In combination with this, a constant-torque control is imposed via the depression of the diesel speed.


The start-up speed is reached when the steering pressure overcomes the preload force of the pressure spring via the piston.

The direction of travel can be selected using the 3/2-way valves. These two valves simultaneously reduce the steering pressure at the piston proportionally depending on the steering pressure at port X1 or X2.

This results in the pump swivelling back when the speed is high (for inching function and deceleration on coasting).

3.3.6 EL-function

Characteristic

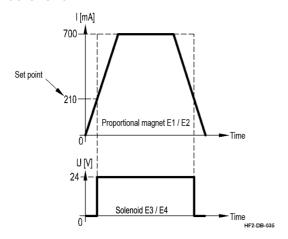
For the EL function, the displacement volume V_g of the axial piston unit is adjusted proportionally and continuously via an electromagnet.

The EL function is subordinate to the DA function, i.e. the control-current-dependent EL function is only executed below the set value for the pressure cut-off.

By adjusting the drive from $V_{g min}$ towards $V_{g max}$, the axial piston unit swivels to a larger displacement volume V_{q} with increasing control current = I at the proportional magnet DRE.

If E1 / E2 is activated, the spool moves in the control unit. By means of mechanical transmission via an adjusting lever, the deflection directly leads to the swivel yoke / pan-tilt, for pivoting the swivel yoke / pan-tilt against the spring force of the return springs, in $V_{\rm q\ max}$ direction.

The hydraulic fluid required for this purpose is taken from high pressure pHD. At high pressure pHD < 30 bar, the Fa port must be supplied with a feed pressure of approx. 30 bar to ensure that regulation is possible.

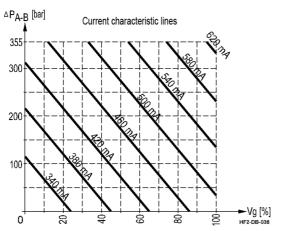

If the activating signal is missing or defective, the axial piston unit swivels to $V_{q min}$.

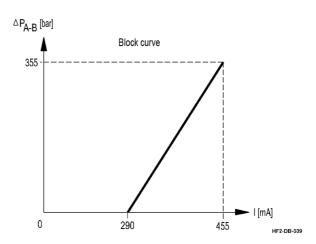
Options

- Safety function: see chapter 3.3.7

3.3.7 ELS- function

Characteristic


If the current consumption at the proportional magnet DRE exceeds a defined value (for example, 210 mA), a solenoid E3 / E4 is additionally supplied with voltage and closes a channel against tank pressure pT in the respective shut-off valve. This process is repeated with each activation of the proportional magnet DRE.


In case of a damage of the proportional magnet (for example, clamping caused by abrasion), the solenoid E3 / E4 is de-energized by switching off the control current I at E1 / E2 by the machine operator, and the channel to the tank pressure pT opens in the respective shut-off valve, and the steering pressure is relieved. The axial piston unit pivots in direction $V_{q \, min}$.

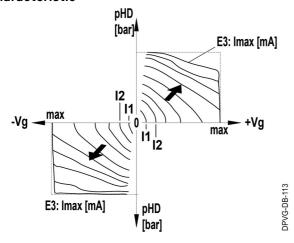
3.3.8 TCE- function

In the TCE function, the displacement volume V_g of the hydraulic pump can be set in several stages dependent on the control current = I [mA] and proportionally to the high pressure pHD. In this manner, constant rotational speeds of the rotary ring are realized, while at the same time being able to limit the maximum power consumption.

Characteristic

The hydraulic pump swivels with increasing control current = I [mA] at the DRE- proportional magnet E1 / E2 in the $V_{g\ max}$ direction and at the same time. it pivots with increasing pressure difference ΔP_{A-B} in the direction $V_{g\ min.}$ (See diagram)

The respective high pressure is fed back to the pilot control valve and counteracts the control signal.


When the drive is stationary, one can establish the pressure difference ΔP_{A-B} in the system in proportion to the control current = I [mA] at the DRE- proportional magnet E1 / E2, for holding the superstructure when working on a slope. (See block curve)

The TCE function is combined with the DA function (see chapter 3.3.2) and is particularly suitable e.g. for turn-table controls.

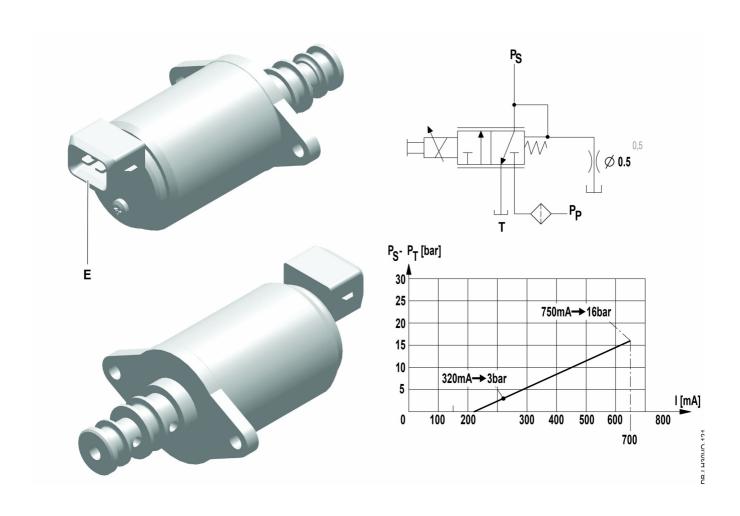
3.3.9 DS-function

In the DS function, the displacement volume V_g of the hydraulic pump can be set continuously in each flow direction. The displacement volume V_g of the hydraulic pump is influenced by the current at the proportional magnet E3, the system pressure, and the pump drive speed.

Characteristic

Depending on the activation at E1 or E2, the hydraulic fluid outlet is at working connection A or B.

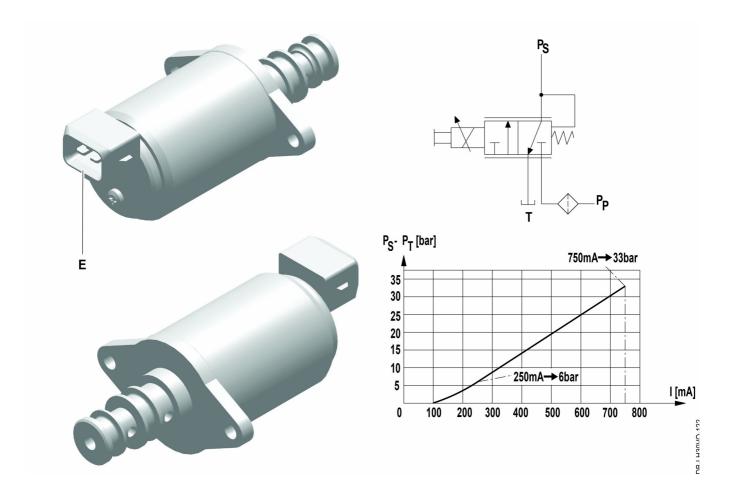
Note


Magnet E1 switched, direction of rotation: L = Oil outlet at connection A Magnet E2 switched, direction of rotation: L = Oil outlet at connection B

As the current at E3 increases, the hydraulic pump flow rate increases as well. As the system pressure increases, the hydraulic pump flow rate decreases. As the pump drive speed increases, the hydraulic pump flow rate increases.

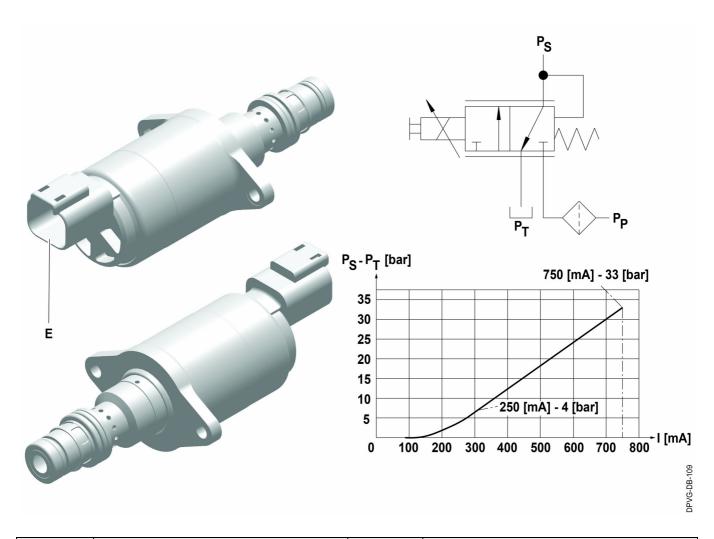
The DS function is combined with the DA function (see chapter 3.3.2) and is particularly suitable for e.g. travel drives.

3.4 Electrical components


3.4.1 Pressure control valve (DRE) variant 1

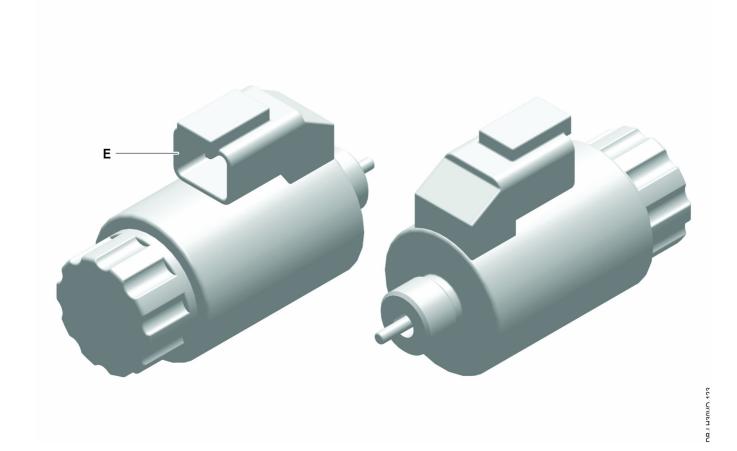
Т	Tank	PS	Output DRE
PP	Input DRE	Е	Connection AMP Junior Timer

Technical data of pressure control valve				
Rated voltage U	24 V			
Current I _{max.}	750 mA			
Supply pressure p _{max.}	50 bar			
Magnet characteristic curve: flat around the regulating position	-			
AMP JUNIOR TIMER plug-in terminal, 2-pin	-			


3.4.2 Pressure control valve (DRE) variant 2

Т	Tank	PS	Output DRE
PP	Input DRE	Е	Connection AMP Junior Timer

Technical data of pressure control valve				
Rated voltage U	24 V			
Current I _{max.}	750 mA			
Supply pressure p _{max.}	350 bar			
Magnet characteristic curve: flat around the regulating position	-			
AMP Junior Timer plug-in terminal	-			


3.4.3 Pressure control valve (DRE) variant 3

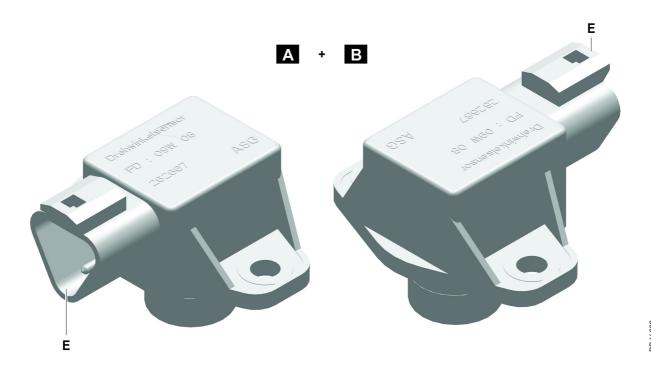
Е	Deutsch plug-in terminal DT04-2P	PS	Output DRE
PT	Tank	PP	Input DRE

Technical data of pressure control valve				
Rated voltage U	24 V			
Current I _{max.}	750 mA			
Supply pressure p _{max.}	50 bar			
Magnet characteristic curve: flat around the regulating position	-			
Deutsch plug-in terminal DT04-2P	-			

3.4.4 Solenoid (safety function)

Е	Deutsch plug-in terminal DT04-2P	-	-
---	----------------------------------	---	---

Technical data - solenoid	
Rated voltage U	24 V
Current I _{max.}	585 mA
Resistor	25 Ω
Deutsch plug-in terminal DT04-2P	-


3.4.5 Sensors

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Rotation angle sensor

0 without sensor

W with rotation angle sensor

Technical data					
Option A		Option B			
Rated voltage U	5 V	Rated voltage U	8-30 V		
Measuring range	-27° to +27°	Measuring range	-27° to +27°		
Output signal -27° 0° +27°	0.5 VDC 2.5 VDC 4.5 VDC	Output signal -27° 0° +27°	4 mA 12 mA 20 mA		
Working temperature	-40 °C to +125 °C	Working temperature	-40 °C to +85 °C		
Deutsch DT04-3P electrical plug-in terminal					

Note

The angle sensor cannot be retrofitted and must be included when planning the DPVG. Dimensions for variants A and B are identical; specify desired variant when ordering.

4.1 General information about project planning

The installation variant for the device or system, along with its installation position, must be coordinated with Liebherr at the conceptual design stage of the axial piston unit and must be approved by Liebherr.

ATTENTION

Lack of lubrication on the hydraulic product!

Damage of the hydraulic product.

Make sure that the following requirements are observed:

- Comply with the approved installation positions for the hydraulic product.
- For other installation positions, contact Liebherr customer service.
- Housing is completely filled with hydraulic fluid during commissioning and operation.
- Housing is vented after commissioning and during operation.

Liebherr distinguishes between two installation variants for axial piston units:

A: Under-the-tank installation (axial piston unit is installed **under** the minimum liquid level of the tank)
B: Over-the-tank installation (axial piston unit is installed **above** the minimum liquid level of the tank)

Liebherr distinguishes between two installation positions for axial piston units:

1/3/5/7/9/11: Driving shaft horizontal 2/4/6/8/10/12: Driving shaft vertical

Note

Liebherr recommends:

Installation variant: Under-the-tank installation A

Installation location: 1/3/5/7/9/11 Driving shaft horizontal with "control at top"

*) For installation positions 2/4/6/8 with driving shaft vertical and 1/3/5/7 with driving shaft horizontal with "control at bottom", complete filling and venting is critical. The axial piston unit must then be connected, filled and vented before final positioning in installation position 1/3/5/7/9 "control at top". It can then be rotated to the final installation position 2/4/6/8 driving shaft vertical or 1/3/5/7 driving shaft horizontal with "control at bottom".

On some axial piston units, an additional T4 leakage oil connection is provided for the installation positions 2/4/6/8 driving shaft vertical and 1/3/5/7 driving shaft horizontal with control at bottom: Order leakage oil connection T4 as special design. (for additional information see: 1 Type code)

4.1.1 Suction line

Given the laws of physics and under simple assumptions about the hydraulic fluid, temperature and ambient pressures, the maximum suction head is 750 mm. This applies in particular to installation variant B: over-the-tank installation.

At low temperatures with high viscosities, it is essential to observe the minimum suction pressure for axial piston units. (for additional information see: 2.3 Permitted pressure range)

The suction line must open into the tank at a minimum distance of 115 mm from the tank bottom to prevent particles of dirt in the tank from being sucked in.

The suction line must open into the tank at a maximum distance from the leakage oil line to prevent hot leakage oil from being sucked in directly.

4.1.2 Leakage oil lines

To prevent draining of the axial piston unit during long downtimes, the leakage oil line must be routed in a bend so that it runs at the minimum dimension $\ddot{U}1 = 30$ mm above the highest possible level of the axial piston unit. This applies in particular to installation variant B: over-the-tank installation.

Connect the leakage oil line to the top leakage oil connection T1, T2, T3....Tx depending on the installation position.

The leakage oil line must open into the tank at a minimum distance of 115 mm from the tank bottom to prevent stirring up dirt particles in the tank.

The leakage oil line must open into the tank at a minimum distance of 250 mm below the minimum liquid level to prevent foaming in the tank.

The leakage oil line must open into the tank at a maximum distance from the suction line to prevent warm leakage oil from being sucked in directly.

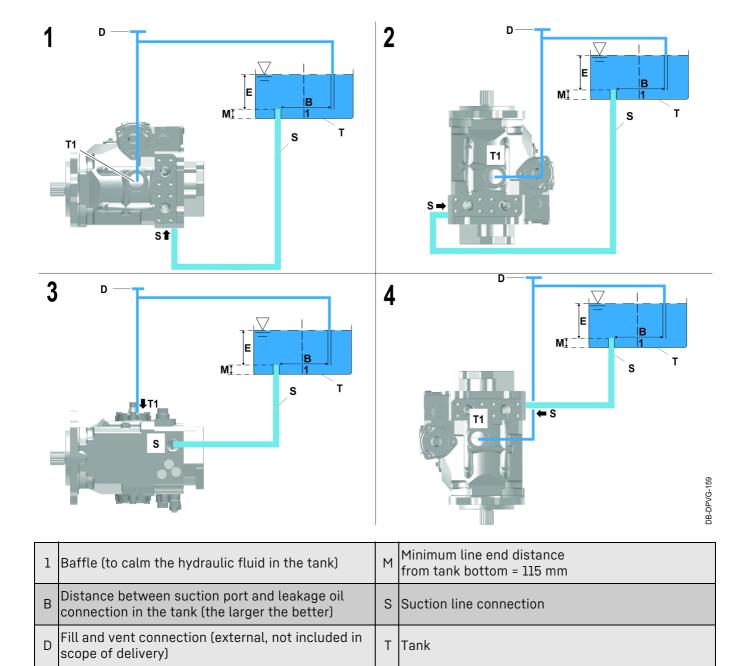
At low temperatures with high viscosities, it is essential to observe the maximum housing pressure for axial piston units with multiple driving gears and with a shared leakage oil line. (for additional information see: 2.3 Permitted pressure range) If the maximum housing pressure is outside the tolerance limit, a separate leakage oil line must be connected for each driving gear.

4.1.3 Hydraulic fluid tank

Design the hydraulic fluid tank so that the hydraulic oil cools off sufficiently during circulation and impurities that develop during operation settle to the bottom of the tank.

Make sure that the lines are connected according to recommendations and that they open into the hydraulic fluid tank. (for additional information see: 4.1.1 Suction line and for additional information see: 4.1.2 Leakage oil lines)

4.2 Installation variants


4.2.1 Under-the-tank installation variant

(i)

Note

Liebherr recommends: Under-the-tank installation A, so that:

- There is hydraulic fluid at suction port S when not operated.
- The housing cannot empty to the tank.

E Minimum immersion depth = 250 mm

Leakage oil connections T1 / T2 / T3 / T4

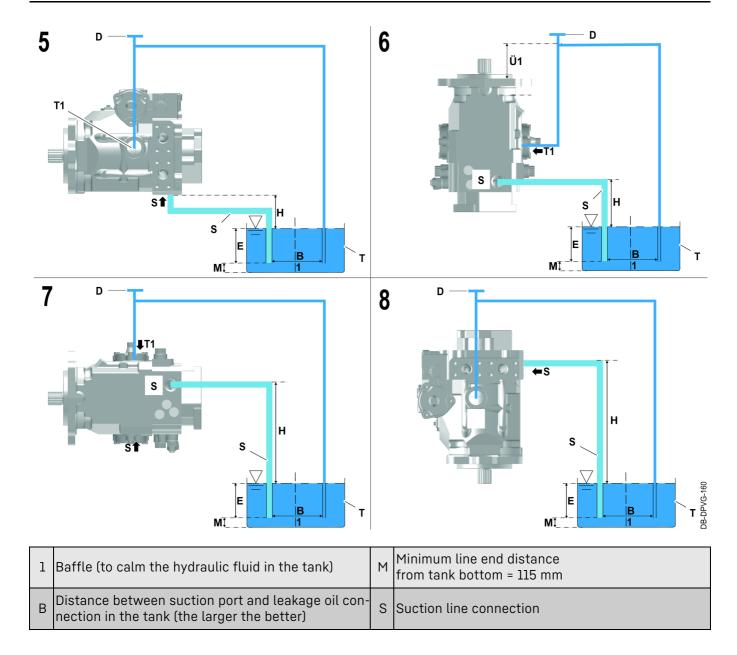
(T4 = optional)

4.2.2 Over-the-tank installation variant

ATTENTION

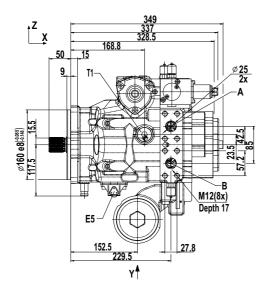
The air cushion in the bearing area or on the rotary shaft lip seal "runs hot" in over-the-tank installation position (installation variant B)!

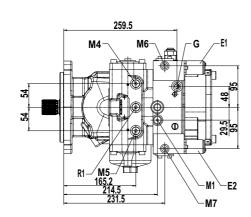
Damage of the hydraulic product.

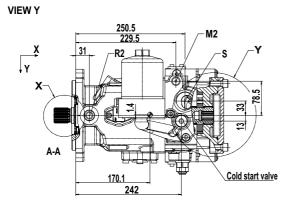

Make sure that the following requirements are observed:

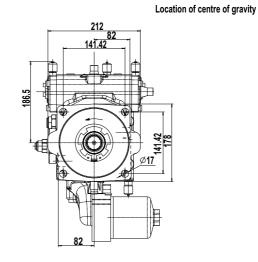
- Housing is completely filled with hydraulic fluid during commissioning and operation.
- Housing is vented after commissioning and during operation*.

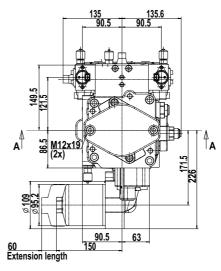
Note

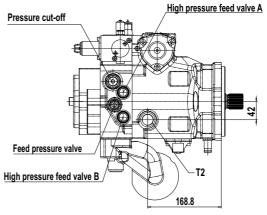

To prevent draining of the axial piston unit during long shutdowns, the leakage oil line must be routed in a bend so that it runs at the minimum dimension $\ddot{U}1 = 30$ mm above the highest possible level of the axial piston unit.




D	Fill and vent connection (external, not included in scope of delivery)	Т	Tank
Е	Minimum immersion depth = 250 mm	T_	Leakage oil connections T1 / T2 / T3 / T4 (T4 = optional)
Н	Maximum suction head = 750 mm	Ü1	Minimum leakage oil line height = 30 mm

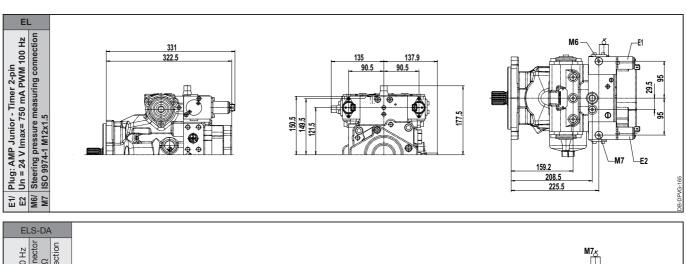

5.1 NS 085

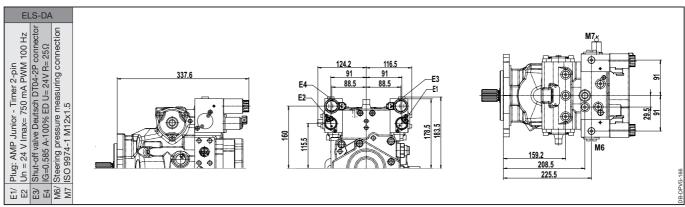

5.1.1 Nominal size 085, EL-DA control type

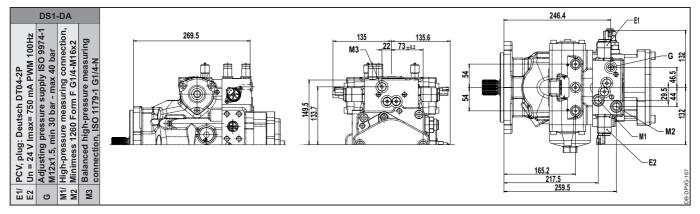


DB-DF	

VG-164

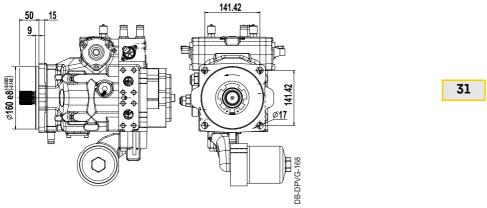

A/B	Working connection SAE J 518 - 1", 6000 psi
R1	Ventilation ISO 9974-1 M12x1.5


T1, T2	Leakage oil connection M26x1.5
-	-


G	Adjusting pressure supply ISO 9974-1, M12x1.5 min 30 bar - max 40 bar
M1 / M2	High-pressure measuring connection Minimess 1620 Form F M12x1.5-M16x2
M4 / M5	Adjusting pressure measuring connection ISO 9974-1 M12x1.5
M6 / M7	Steering pressure measuring connection Minimess 1620 Form F M14x1.5-M16x2

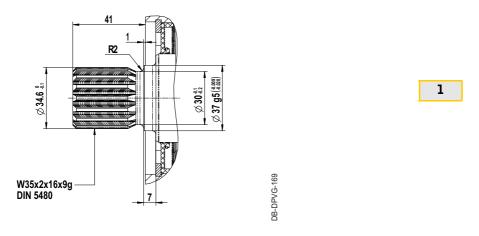
S	Feed pump suction port ISO 9974-1 M42x2
R2	Ventilation Minimess 1620 Form F M12x1.5-M16x2
E1 / E2	Pressure control valve, plug: AMP Junior Timer 2-pin, PWM= 100 Hz, U= 24 V, Imax.= 750 mA
E5	Angle sensor; plug: Deutsch 3-pin DT-04-3P power supply U= 24 V,

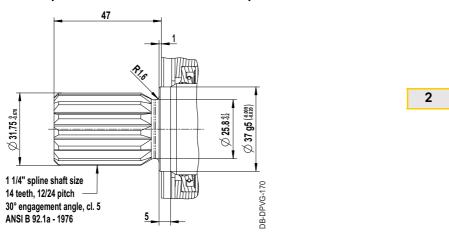
5.1.2 Nominal size 085, other control types



5.2 Nominal size 085, mounting flange

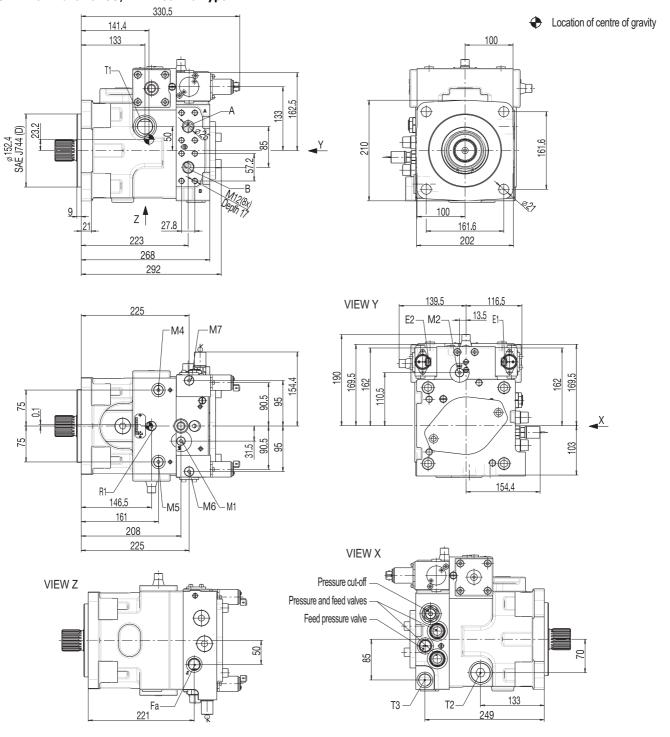
DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.


ISO 3019-2


5.3 Nominal size 085, shaft end

	DPV	G		/	000		1				Α	0					l
Ī	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	1

W35x2x16x9g splined shaft DIN 5480

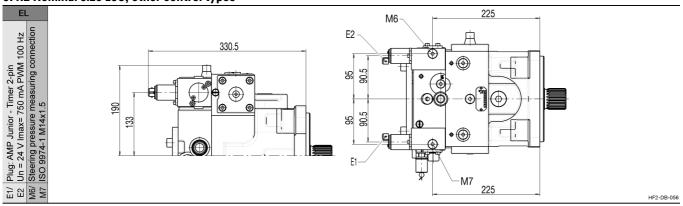


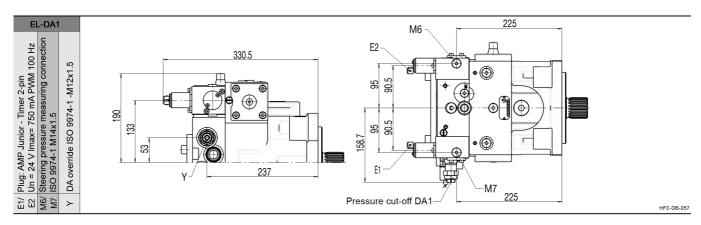
ANSI B92.1a splined shaft 1 1/4 in 14T 12/24 pitch

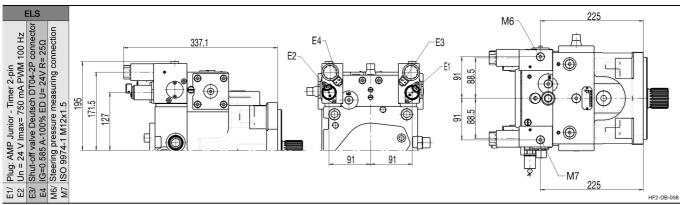
5.4 NS 108

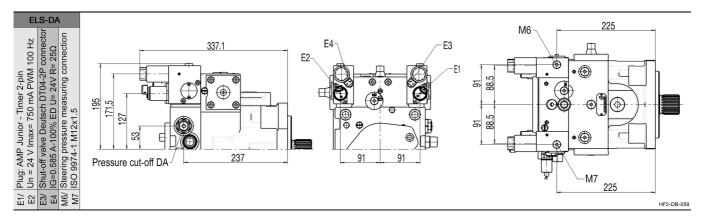
5.4.1 Nominal size 108, EL-DA control type

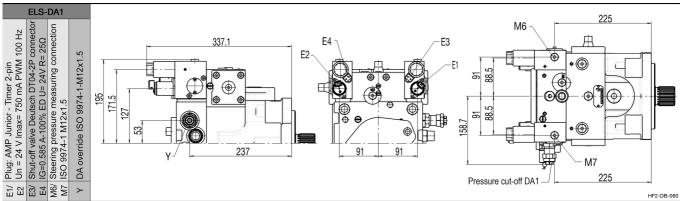
HF2-DB-055

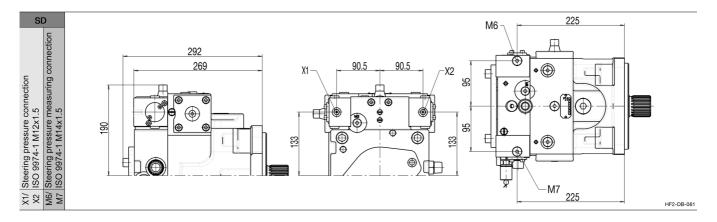

A/B	Working connection SAE J 518 - 1", 6000 psi
R1	Ventilation M14x1.5

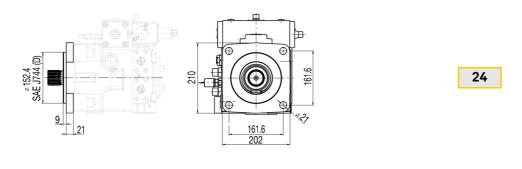

T1, T2	Leakage oil connection M33x2
Fa	Feed pressure connection M26x1.5


M1 / M2	High pressure measuring connection M12x1.5
M4 / M5	Adjusting pressure measuring connection M14x1.5
Т3	Return for feed pressure valve


M6 / M7	Steering pressure measuring connection M14x1.5
E1 / E2	Pressure control valve, plug: AMP Junior Timer 2-pin, PWM= 100 Hz, U= 24 V, Imax.= 750 mA
-	-

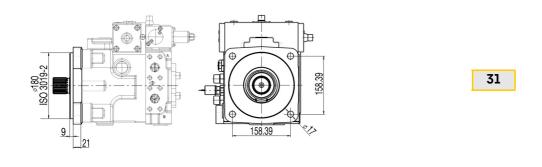

5.4.2 Nominal size 108, other control types



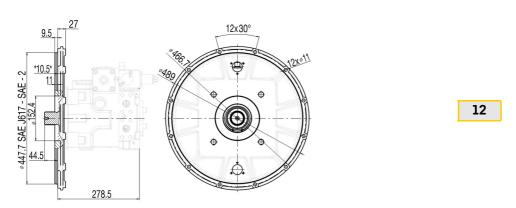


60

5.5 Nominal size 108, mounting flange


DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

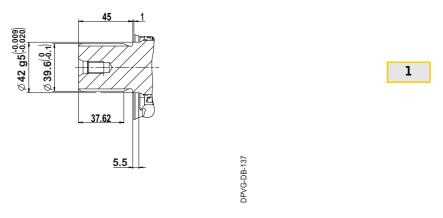
SAE D (SAE J744)



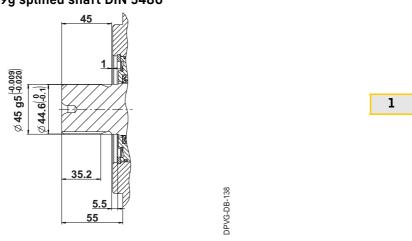
HF2-DB-06

ISO 3019-2

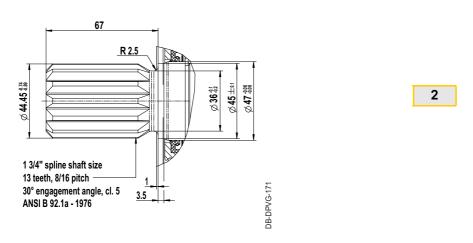
Diesel engine flange SAE 2 (SAE J617)



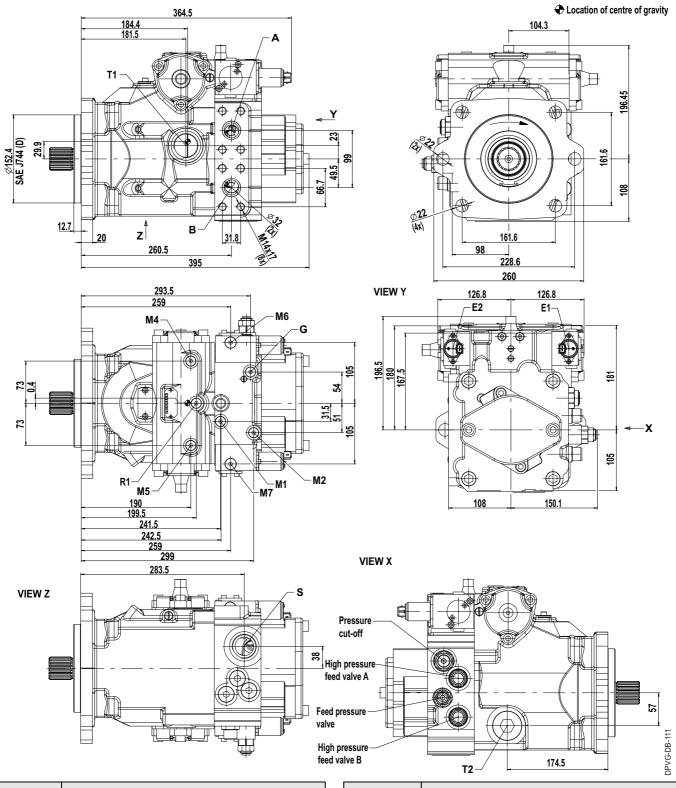
HF2-DB-068 10.5*) Shift from mounting flange


5.6 Nominal size 108, shaft end

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.


W40x2x18x9g splined shaft DIN 5480

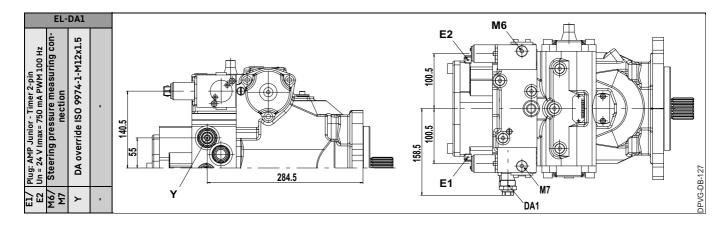
W45x2x21x9g splined shaft DIN 5480

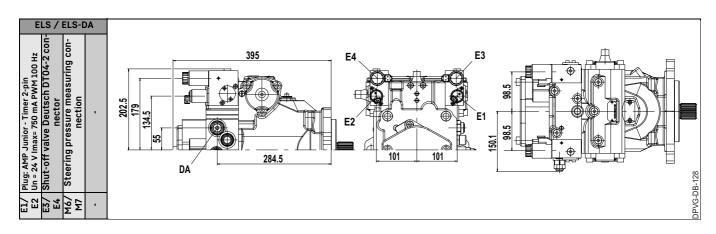


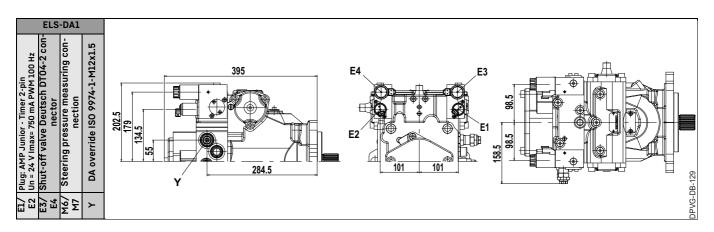
ANSI B92.1a splined shaft 1 3/4 in 13T 8/16 pitch

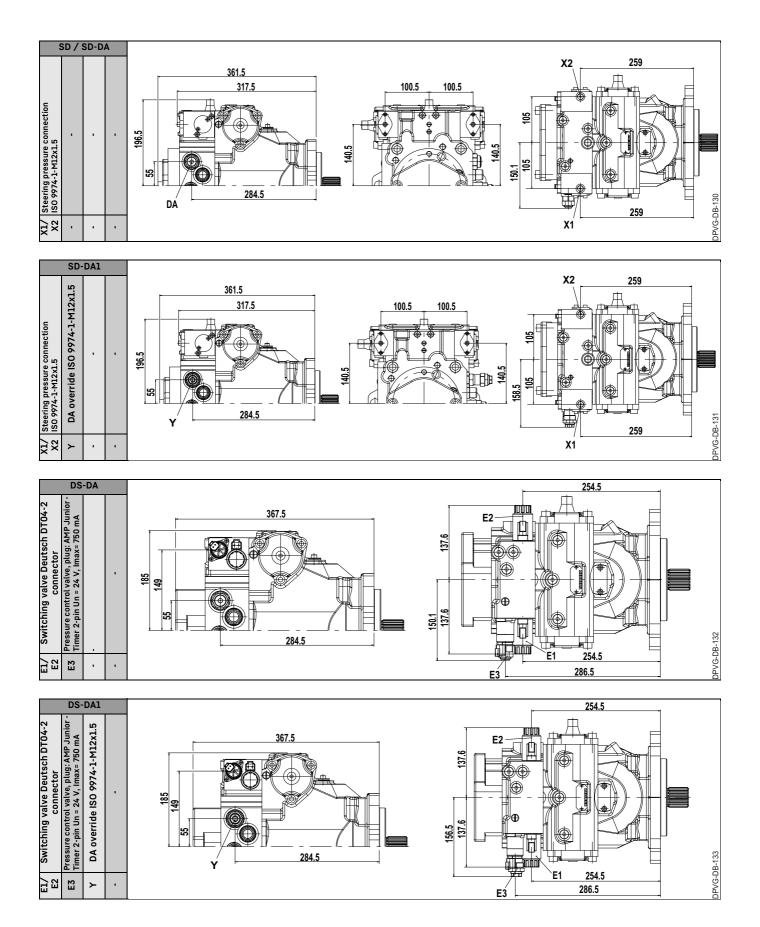
5.7 NS 140

5.7.1 Nominal size 140, EL-DA control type

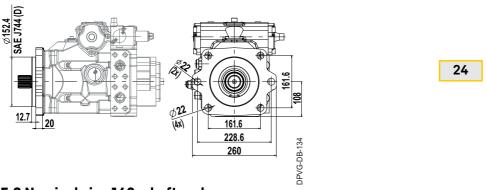

A, B	Working connections SAE J 518
R1	Vent connection ISO 9974-1


T1, T2	Leakage oil connection ISO 9974-1
M1, M2	High pressure measuring connections ISO 9974-1


G	Pressure connection for auxiliary circuits ISO 9974-1
E1, E2	Pressure control valve, AMP Junior Timer plug-in terminal, 2-pin, PWM= 100 Hz, Un= 24V, Imax.= 750 mA
S	Gear pump suction port ISO 9974-1

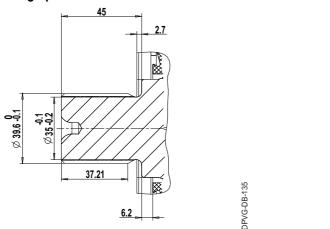

M4, M5	Adjusting pressure measuring connections ISO 9974-1
M6, M7	Steering pressure measuring connections ISO 9974-1
-	-

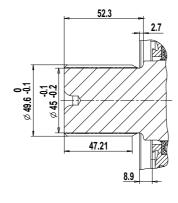
5.7.2 Nominal size 140, other control types



5.8 Nominal size 140, mounting flange

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

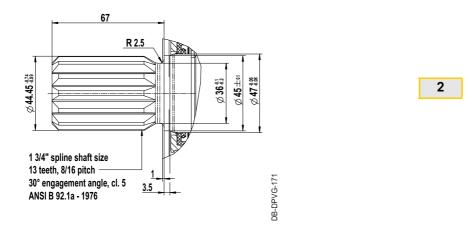

SAE D (SAE J744)


5.9 Nominal size 140, shaft end

	DPV	G		/	000		1				Α	0				
ſ	1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

W40x2x18x9g splined shaft DIN 5480

W50x2x24x9g splined shaft DIN 5480



1

1

מר ט/ים

ANSI B92.1a splined shaft 1 3/4 in 13T 8/16 pitch

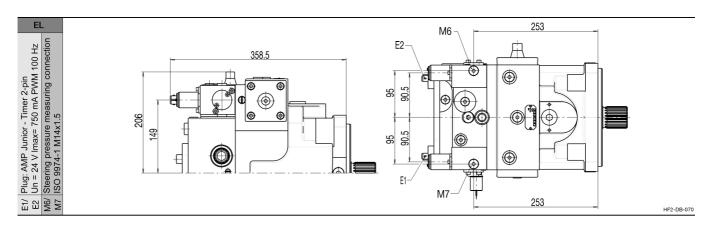
5.10 NS 165

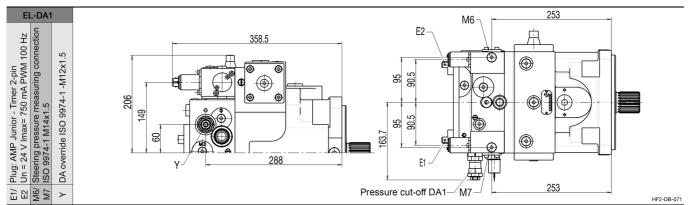
5.10.1 Nominal size 165, EL-DA control type 170 Location of centre of gravity 103 236 z 9 25 270 322 346 123.5 103 VIEW Y E2-253 M7 M4 206 190.4 177 178 190.4 Φ **▼**X φ M5-164 19 M2 110 M6 - M1 253 270.5 288 310.5 VIEW X VIEW Z Pressure cut-off Pressure and feed valves Feed pressure valve

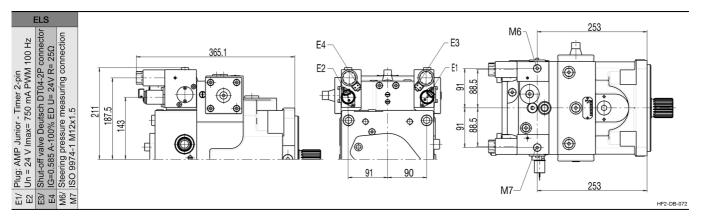
Т3

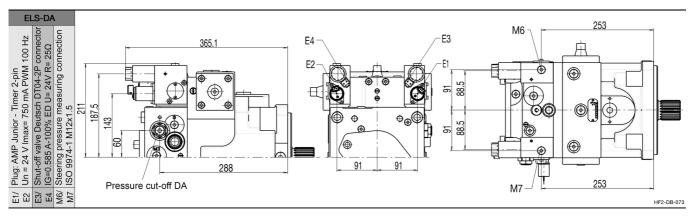
T2

163

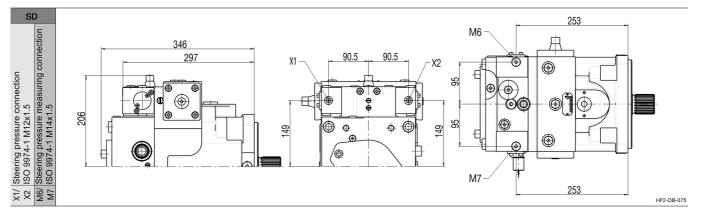

HF2-DB-069

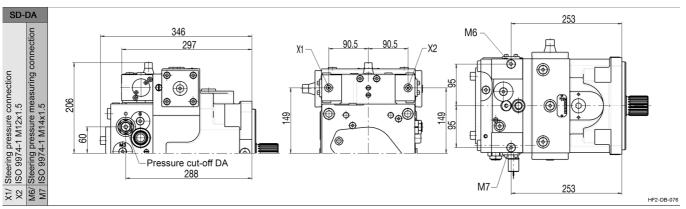

249.5

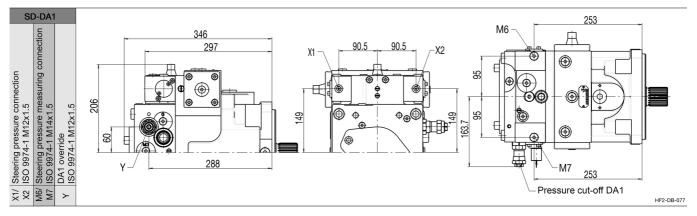

A/B	Working connection SAE J 518 - 11/4", 6000 psi
R1	Ventilation M14x1.5
M1 / M2	High pressure measuring connection M12x1.5
M4 / M5	Adjusting pressure measuring connection M14x1.5
Т3	Return for feed pressure valve M22x1.5

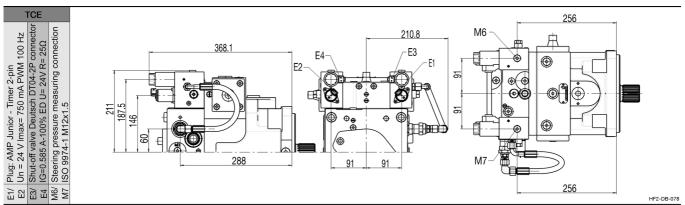

T1, T2	Leakage oil connection M42x2
Fa	Feed pressure connection M33x2
M6 / M7	Steering pressure measuring connection M14x1.5
E1 / E2	Pressure control valve, plug: AMP Junior Timer 2-pin, PWM= 100 Hz, U= 24 V, Imax.= 750 mA
-	-

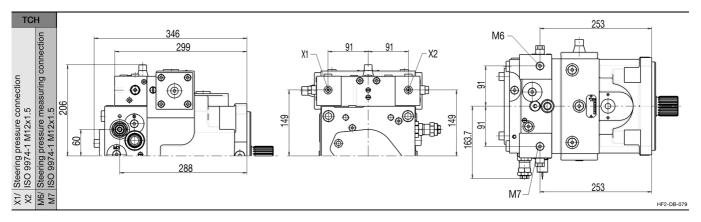

5.10.2 Nominal size 165, other control types

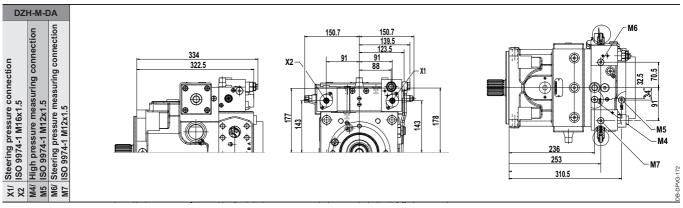


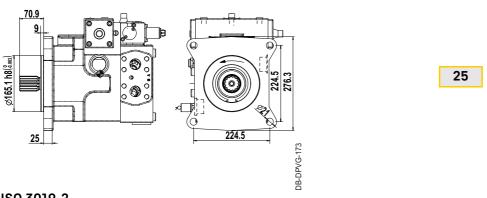


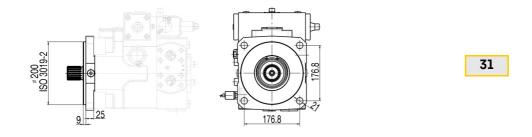








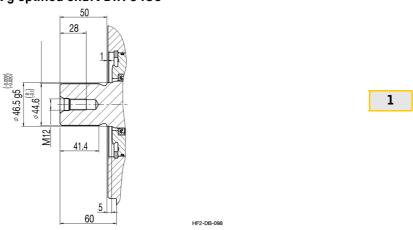



5.11 Nominal size 165, mounting flange

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

SAE E (SAE J744)

ISO 3019-2



HF2-DB-080

5.12 Nominal size 165, shaft end

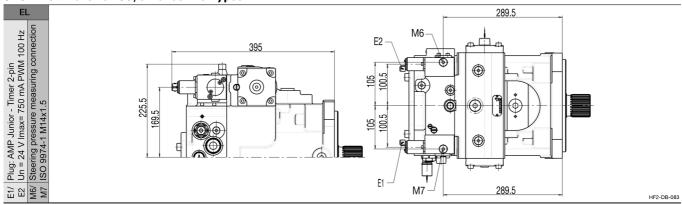
DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

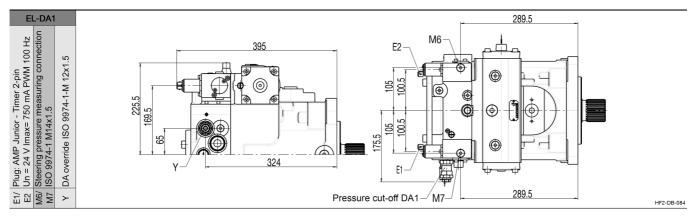
W45x2x21x9g splined shaft DIN 5480

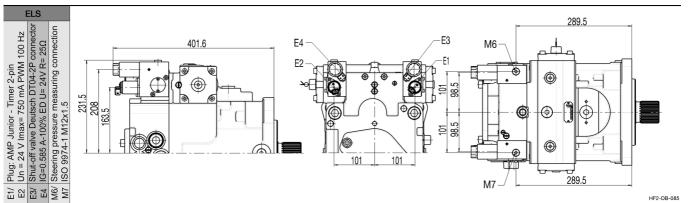
5.13 NS 280

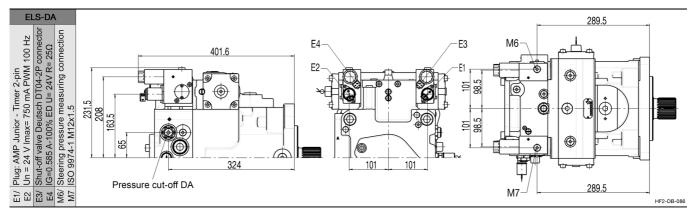
5.13.1 Nominal size 280, EL-DA control type

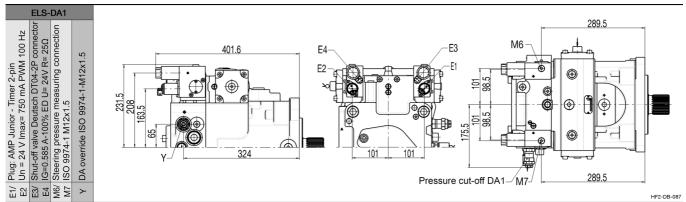
HF2-DB-082

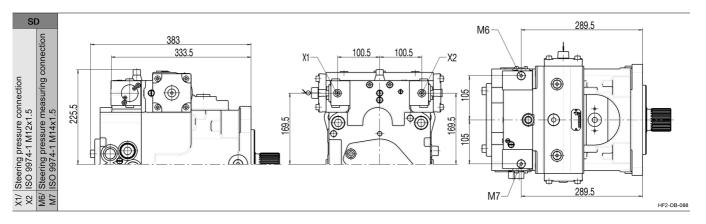

*) Dimensions for NS 280 - swivel yoke version.

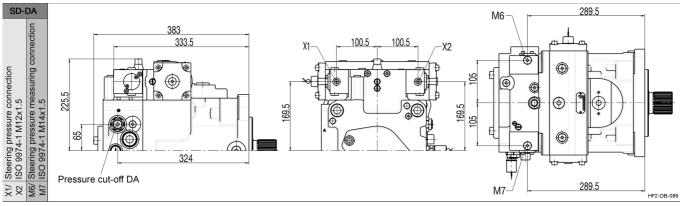

Dimensions of swing rocker version on request.

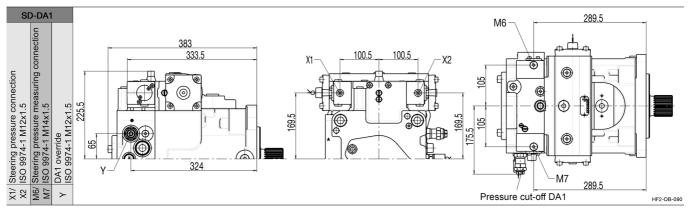

A/B	Working connection SAE J 518 - 1 1/2", 6000 psi
R1	Ventilation M22x1.5
M1 / M2	High pressure measuring connection M12x1.5
M4 / M5	Adjusting pressure measuring connection M14x1.5
Т3	Return for feed pressure valve M26x1.5

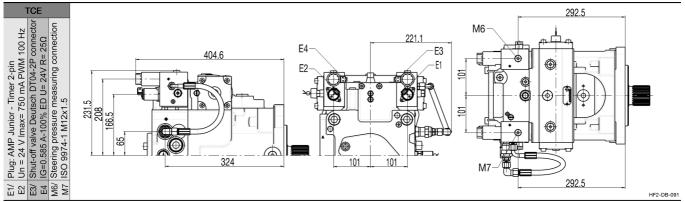

T1, T2	Leakage oil connection M42x2
Fa	Feed pressure connection M26x1.5
M6 / M7	Steering pressure measuring connection M14x1.5
E1 / E2	Pressure control valve, plug: AMP Junior Timer 2-pin, PWM= 100 Hz, U= 24 V, Imax.= 750 mA
-	-

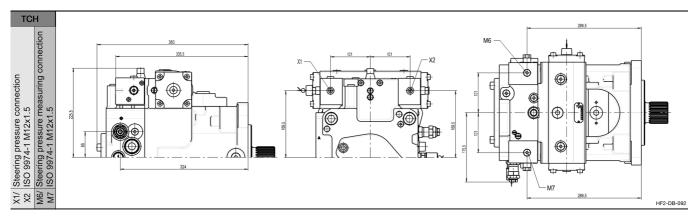

5.13.2 Nominal size 280, other control types

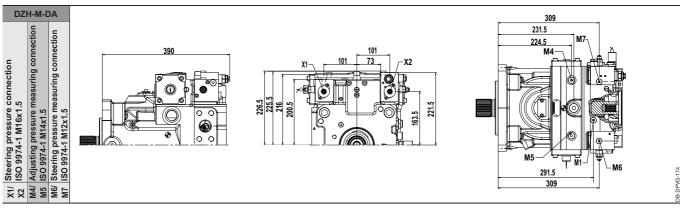




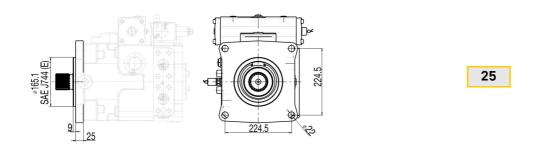




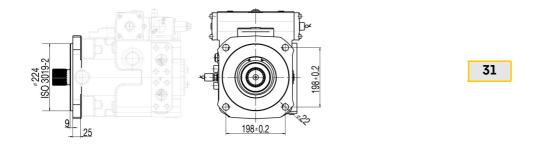




75



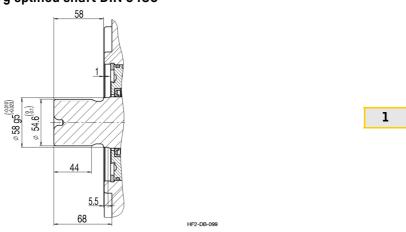
5.14 Nominal size 280, mounting flange


DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

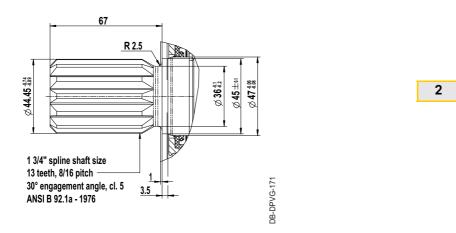
SAE E, (SAE J744)

HF2-DB-093

ISO 3019-2



HF2-DB-094


5.15 Nominal size 280, shaft end

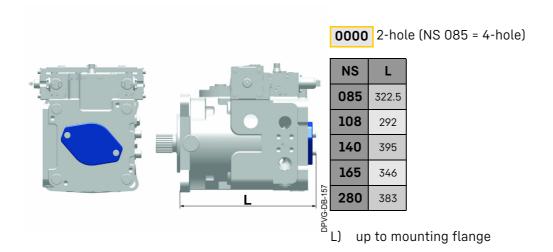
DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

W55x2x26x9g splined shaft DIN 5480

ANSI B92.1a splined shaft 1 3/4 in 13T 8/16 pitch

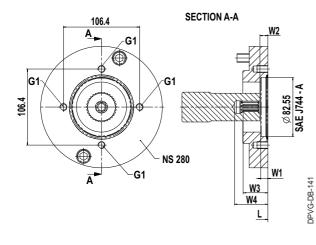
5.16 Through drive

DPV	G		/	000		1				Α	0				
1.	2.	3.	/	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.


5.16.1 Axial piston unit without through-drive / with preparation for through-drive mounting kit

Note

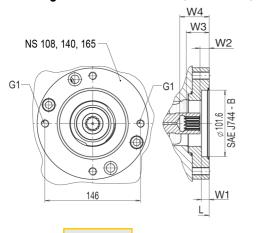
 $\label{preparation} \mbox{Preparation for through-drive mounting kit, closed with cover.}$


To use the through-drive, the selected through-drive mounting kit including coupling ferrule (see installation drawing) must be ordered separately, the cover removed and the through-drive mounting kit installed.

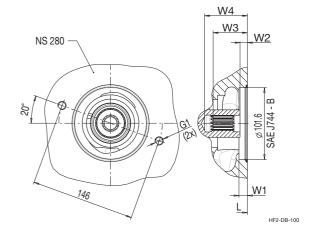
5.17 Through-drive - hole open

5.17.1 SAE A

Gearing: ANSI B92.1a-1976 5/8" 9T 16/32 DP


AllD	2-hole

NS	W1	W2	W3	W4	L	G1 (2-hole)
085	1	-	1	-	1	-
108						
140						
165						
280	10	11	34.5	46.5	386	M10x1.5: 15 deep


L*) up to mounting flange/ \square = on request

5.17.2 SAE B

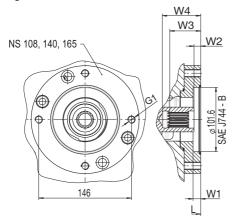
Gearing: ANSI B92.1a-1976 7/8" 13T 16/32 DP

PVG-DB-139

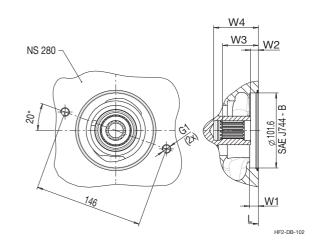
2-hole:

B11D

4-hole:


B12D

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
085							
108	12	10.5	48.5	60.5	294	M12x1.75: 26 deep	-
140	12	10.5	48.5	60.5	338.5	M12x1.75: 26 deep	
165	12	14.1	35.1	45.1	348	M12x1.75: 26 deep	-
280	12	10.5	48.5	60.5	386	M12x1.75: 18 deep	-


L*) up to mounting flange / \square = on request

5.17.3 SAE BB

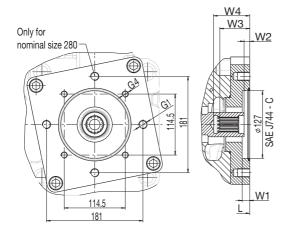
Gearing: ANSI B92.1a-1976 1" 15T 16/32 DP

WG-DR-140

2-hole:

B21D

4-hole:

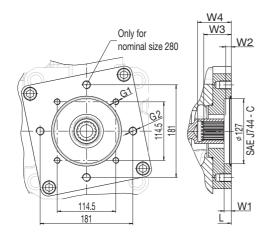

B22D

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
085							
108	12	10.5	48.5	60.5	294	M12x1.75: 26 deep	-
140	12	10.5	48.5	60.5	338.5	M12x1.75: 26 deep	
165	12	10.5	49	60.5	348	M12x1.75: 26 deep	-
280	12	10.5	48.5	60.5	386	M12x1.75: 18 deep	-

L*) up to mounting flange / \square = on request

5.17.4 SAE C

Gearing: ANSI B92.1a-1976 1 1/4" 14T 12/24 DP

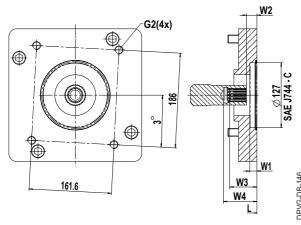

C11D	2-hole
C12D	4-hole

	NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	085							
	108	14	23	53	65	304	M16x2: 23 deep	M12x1.75: 18 deep
	140	14	10.5	56	68	362	M16x2: 25 deep	M12x1.75: 19 deep
)B-152	165	14	13	54	59.5	358	M16x2: 23 deep	M12x1.75: 18 deep
DPVG-DB-152	280	14	10.5	56	68	396	M16x2: 23 deep	M12x1.75: 18 deep

L*) up to mounting flange/ \square = on request

5.17.5 SAE CC

Gearing: ANSI B92.1a-1976 1 1/2" 17T 12/24 DP

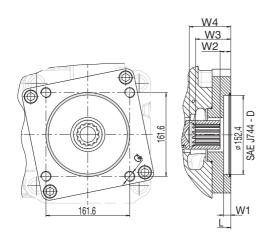

C21D	2-hole
C22D	4-hole

	NS	Wl	W2	W3	W4	Г	G1 (2-hole)	G2 (4-hole)
	085							
	108	14	13	53	65	304	M16x2: 23 deep	M12x1.75: 18 deep
	140							
133	165	14	13	54	65	358	M16x2: 23 deep	M12x1.75: 18 deep
۷G-DB-	280	14	14	54	66	396	M16x2: 23 deep	M12x1.75: 18 deep

L*) up to mounting flange/ \square = on request

5.17.6 SAE C

Gearing: DIN 5480 N30x2x14x10E

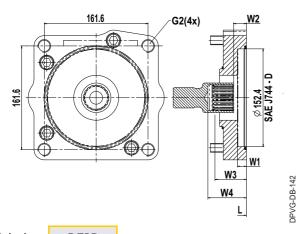


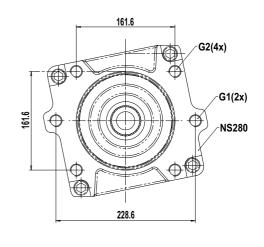
	NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	085							
	108							
	140							
91	165							
/G-DB-146	280	14	20.5	53.5	65.5	396		M16x2: 23 deep

L*) up to mounting flange/ \square = on request

5.17.7 SAE D

Gearing: ANSI B92.1a-1976 1 3/4" 13T 8/16 DP




D11D	2-hole
D12D	4-hole

78 314
80 358
80 358

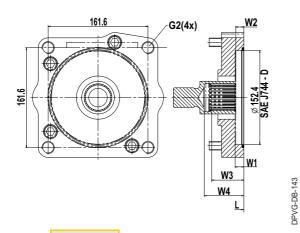
L*) up to mounting flange/ \square = on request

Gearing: DIN 5480 N40x2x18x10E

2-hole:

D31D

4-hole:


D32D

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
085	-	-	-	-	-	-	-
108	14	20	49	60	304		M20x2.5: 27 deep
140							
165	14	20	49	60	358		M20x2.5: 27 deep
280	14	20.5	49.5	60.5	396	M20x2.5: 27 deep	M20x2.5: 27 deep

L*) up to mounting flange/ \square = on request

DPVG-DB-144

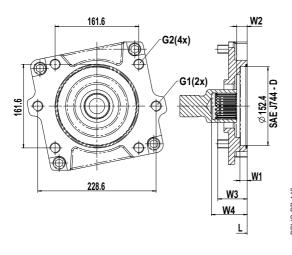
Gearing: DIN 5480 N45x2x21x10E

G2(4x)
G1(2x)
NS280
228.6

161.6

2-hole:

D31D

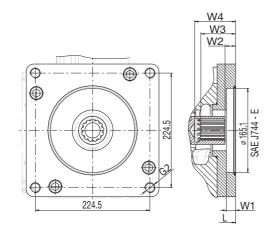

4-hole:

D32D

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
085	-	-	-	-	-	-	-
108	14	13	52	64	304		M20x2.5: 27 deep
140							
165	14	20	59	70	358		M20x2.5: 27 deep
280	14	19	55	67	396	M20x2.5: 27 deep	M20x2.5: 27 deep

L*) up to mounting flange/ \square = on request

Gearing: DIN 5480 N50x2x24x10E


D31D	2-hole
D32D	4-hole

	NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	085	-	1	1	1	-	-	-
	108							
	140							
5	165							
G-DB-145	280	14	20.5	57	69	396	M20x2.5: 27 deep	M20x2.5: 27 deep

L*) up to mounting flange/ \square = on request

5.17.8 SAE E

Gearing: ANSI B92.1a-1976 1 3/4" 13T 8/16 DP

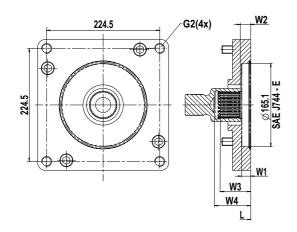


E11D	2-hole
E12D	4-hole

	NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	085	1	1	1	1	1	-	-
	108	1	1	1	1	1	-	-
	140	1	1	1	1	1	-	-
ζ2	165	-	1	ı	1	-	-	-
DPVG-DB-155	280	12	10.5	48.5	60.5	396	-	M20x2.5: 36 deep
DPVG								

L*) up to mounting flange/ -= not possible

Gearing: DIN 5480 N50x2x24x10E

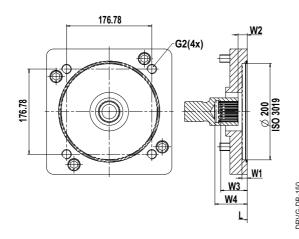


E31D	2-hole
E32D	4-hole

	NS	Wl	W2	W3	W4	Г	G1 (2-hole)	G2 (4-hole)
	085	1	1	ı	ı	ı	-	-
48	108	-	-	-	-	-	-	-
	140	1	1	1	1	1	-	-
	165	1	1	1	1	1	-	-
PVG-DB-148	280	18	20.5	57	69	396	-	M20x2.5: 36 deep

L*) up to mounting flange/ -= not possible

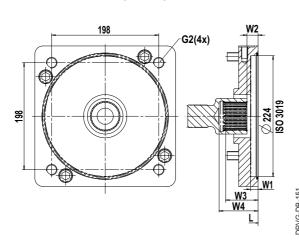
Gearing: DIN 5480 N55x2x26x10E



E31D	2-hole
E32D	4-hole

	NS	W1	W2	W3	W4	Г	G1 (2-hole)	G2 (4-hole)	
	085	-	1	-	1	1	-	-	
	108	-	-	-	-	-	ı	-	
	140	-	-	-	-	-	-	-	
	165	-	-	-	-	-	1	-	
3-149	280	18	20.5	60	72	396	-	M20x2.5: 36 deep	
DPVG-DE	280 18 20.5 60 72 396 - M20x2.5: 36 deep 280 L*) up to mounting flange/ -= not possible								

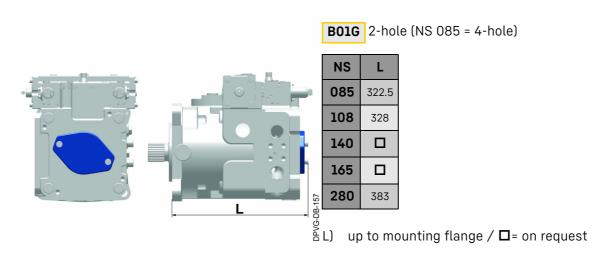
5.17.9 ISO 3019-2 / DIN 5480


\varnothing 200 ISO 3019-2 / gearing: DIN 5480 N45x2x21x10E

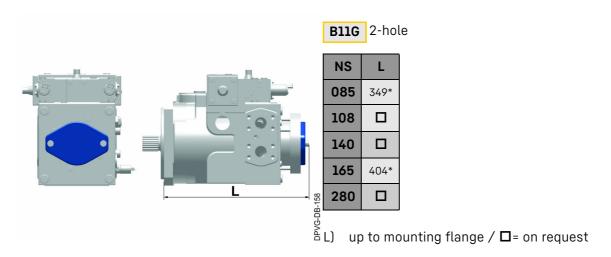
V31D	2-hole
V32D	4-hole

	NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	085	-	ı	1	1	1	-	-
	108	-	•	ı	ı	ı	1	-
	140	-	1	-	-	-	-	-
	165	•	ı	ı	ı	ı	1	-
150	280	11	19	55	67	396	-	M20x2.5: 36 deep
DPVG-DB-150	L*) up to mounting flange/ -= not possible							
o /								

Ø 224 ISO 3019-2 / gearing: DIN 5480 N55x2x26x10E


W31D	2-hole
W32D	4-hole

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
085	ı	•	ı	-	1	-	-
108	ı	ı	•	ı	ı	1	-
140	ı	•	ı	•	•	-	-
165	ı	1	1	1	1	1	-
280	14	20.5	60	72	396	1	M20x2.5: 36 deep


L*) up to mounting flange /-= not possible

5.18 Through-drive - hole closed with cover

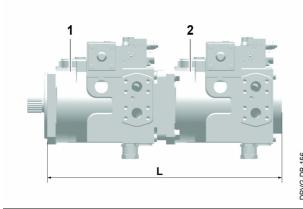
Gearing: none

Gearing: ANSI B92.1a-1976 7/8" 13T 16/32 DP

*) in combination with feed pump

Note

Other through-drive versions "hole closed with cover" possible upon request. Additional details upon request.


5.19 Multi-circuit pump in tandem design

General information

Multi axial piston units of two or more single units can be supplied on request.

In this case, the base axial piston pump P1 must be connected with another axial piston pump P2 by an intermediate flange 10 and a coupling ferrule 11.

The type code must be filled out separately for each single unit. An abbreviated type designation on an additional type plate is used to identify the multi-unit.

1	Base axial piston pump
2	Flanged axial piston pump

L	Multi-circuit pump overall length in mm
-	-

Note

Multi-circuit pump overall length on request.

Changes, conditions, copyright

Subject to changes without prior notice in the course of technical development.

All texts, images, graphics, tables and other illustrations and their layout are protected by copyright. The contents of this catalogue may not be copied, distributed, modified or made available to third parties without the express written consent of Liebherr Machines Bulle SA. Some of the images in this data sheet are subject to third-party copyright.

The information in this data sheet does not release the users from the obligation to complete their own assessments and tests. The content has been prepared with the greatest possible care. Nevertheless, no guarantee can be given for the information provided being accurate, complete or up-to-date.

The data sheet mostly shows an example configuration, unless otherwise stated. The product delivered to you may therefore differ from the illustrations. Data and values may also deviate. Such data and values are provided only for the purpose of selecting the product configuration and are not binding. Therefore, use the values from the installation drawing provided to you.

Warranty and liability conditions under the general terms and conditions of the relevant Liebherr business partner are not extended by the above information.

The latest versions of Liebherr's data sheets are available on our website at https://www.liebherr.com.

Do you have any questions? Get in touch with your contact for further information.

Changes, conditions, copyright

Subject to changes without prior notice in the course of technical development.

All texts, images, graphics, tables and other illustrations and their layout are protected by copyright. The contents of this catalogue may not be copied, distributed, modified or made available to third parties without the express written consent of Liebherr Machines Bulle SA. Some of the images in this data sheet are subject to third-party copyright.

The information in this data sheet does not release the users from the obligation to complete their own assessments and tests. The content has been prepared with the greatest possible care. Nevertheless, no guarantee can be given for the information provided being accurate, complete or up-to-date.

The data sheet mostly shows an example configuration, unless otherwise stated. The product delivered to you may therefore differ from the illustrations. Data and values may also deviate. Such data and values are provided only for the purpose of selecting the product configuration and are not binding. Therefore, use the values from the installation drawing provided to you.

Warranty and liability conditions under the general terms and conditions of the relevant Liebherr business partner are not extended by the above information.

The latest versions of Liebherr's data sheets are available on our website at https://www.liebherr.com.

Do you have any questions? Get in touch with your contact for further information.