Powerful, Robust and Reliable

Diesel Engines by Liebherr
Powerful diesel engines by Liebherr
Liebherr diesel engines are designed and manufactured in Bulle, Switzerland and Colmar, France. The first 6-cylinder inline engines came off the production line in 1985 in the first production site, Bulle. Since then, the product portfolio, manufacturing systems and the production sites have been continuously expanded.

Currently the product range of series production engines comprises eleven different basic engines in the power class from 130 kW to 4,500 kW. Starting with the 4- and 6-cylinder inline engines and through to the large V-type engines up to 20 cylinder engines, a wide power and torque range is covered. Further engines which will enhance the portfolio are continuously being developed.

Advantages

Diesel engines from Liebherr have been specially developed for use in off-road applications. They are perfectly suited to the toughest environmental conditions and are thus ideal for a large variety of industries and applications. The engines have proven their efficiency thousands of times in Liebherr equipment and are also in demand from a growing number of customers outside the Liebherr group who value the engines above all because of their performance capability, reliability, and outstanding smoothness.

Outstanding performance
- High efficiency and ideal torque curve

Exhaust gas aftertreatment
- Simple solutions for low total cost of ownership

Very smooth running
- Low noise and reduced vibration

Quality and reliability
- Reliable and robust in every situation

Modular engine system
- Everything from a single source for maximum flexibility

Service and maintenance
- Global organization for local availability and support
Outstanding performance

Diesel engines from Liebherr are distinguished by their high specific performance. This can be called upon at any time thanks to the responsive engines. Engine architecture, injection system and engine management are adapted ideally to each other in order to achieve an optimal, application-specific torque curve. This is decisive not just for the performance but also for the degree of efficiency and thereby fuel consumption.
High efficiency and ideal torque curve

Flexible torque curve
The torque curves have been specifically adapted to every application. In this way, the maximum torque is available just when it is needed, even at low engine speeds.

Powerful auxiliary outputs (PTOs)
The engines from Liebherr feature up to four generously proportioned power take-off units with which, for example, fan pumps, power steering pumps and other auxiliary consumers can be driven in the machine.

Matched turbochargers
To achieve a high level of torque and optimal combustion, Liebherr matched the turbochargers specifically to each engine. For some engine models, two stage charging systems are available. The turbochargers are designed to provide the required amount of air at all times. In this way, the air-fuel mixture and working pressure in the piston can be adapted ideally to the application. Thanks to efficient charging, diesel engines from Liebherr can also be used at high altitudes.

Powerful auxiliary outputs (PTOs)
Diesel engines from Liebherr feature up to four powerful and generously proportioned power take-off units depending on the model.

Engine characteristics
Thanks to their peculiar torque curves that are both high and wide, a multitude of specific torque curves for specific applications can be derived.

Liebherr injection system
The performance of a combustion engine is largely determined by its injection system. The Liebherr Common Rail system generates high injection pressures (up to 2,200 bar) for maximum efficiency.
Very smooth running

Diesel engines from Liebherr run absolutely smoothly, evenly and with low vibration – even under arduous operating conditions. By low noise combustion with an optimised combustion pressure characteristic, vibrations are minimised right from the outset. A rigid design and generously proportioned components also contribute towards reduced vibrations.
Low noise and reduced vibration

Low noise combustion
For low noise combustion, the injection timing and combustion pressure curve must be absolutely accurate. In addition, a precise and even injection across all cylinders is crucial. The Liebherr-developed Common Rail system, including own engine control unit, therefore features a separate pressure accumulator for each cylinder and allows extremely stable multiple injection with high accuracy, even with minimum injection quantities.

Rigid engine design
All of the mechanical parts in Liebherr diesel engines have been optimised to reduce the noise and oscillation level to a minimum. With the extremely stiff design of engine block, crankcase, oil sump, valve cover and subframe, diesel engines from Liebherr set a benchmark in terms of noise emissions. Where possible, gear trains are used for auxiliary drive systems. Optimised gear pairing facilitates low noise transmission of very high torques.

Balance shaft on 4-cylinder engines
Generally, the more cylinders an engine has the smoother is runs. On its 4-cylinder engines, therefore, Liebherr has implemented specific measures to reduce the level of vibrations. Thanks to a balance shaft, the engines run much more smoothly than comparable 4-cylinder engines. The level of smooth running is almost the same as that on a 6-cylinder engine.

FEM analysis of connecting rods
The rigidity and optimal weight distribution of the connecting rods is optimised among other things with the aid of FEM-based analyses (finite element method).

Balance shaft
Dynamic forces in a 4-cylinder engine are compensated for by a balance shaft. Therefore, the 4-cylinder engines from Liebherr have much lower vibrations and much smoother operation than comparable 4-cylinder engines.

Multiple injection
The combustion pressure curve can be optimised through multiple injection. Together with an ideal injection point and an extremely uniform injection quantity for every cylinder, the combustion procedure can be configured so that noise and emission are very low.
Modular engine system

Powerful and durable diesel engines which are highly efficient and ensure low emissions can only be achieved through ideal coordination of the engine architecture, injection system, engine control, and exhaust gas aftertreatment. Liebherr consequently develops and designs all these components itself, and manufactures important parts in its own factories. An engine can be extended into a drivetrain by means of robust splitter boxes and hydraulic pumps.
Everything from a single source for maximum flexibility

Same interfaces
Liebherr has structured its engines in an innovative and well-designed modular system. The EGAT strategy and technology for each emission standard has been defined, developed and thoroughly carried out through each engine series allowing Liebherr engines to present identical performances, the same requirements for the machine’s cooling system, and the same interfaces when installed and that, independently from the emission levels. This enables the customer to use the same machine design for different parts of the world.

Operating world wide
Thanks to a high flexibility, Liebherr diesel engine can easily be adapted in order to integrate a high altitude or a cold starting kit. Furthermore, thanks to additional aftertreatment systems, every diesel engine from the portfolio is complying with the most stringent global emission regulations.

Extension to drivetrain
Liebherr also offers splitter boxes and axial piston pumps that can supplement the diesel engines to create a customer-specific drivetrain. All of the components are developed and manufactured by Liebherr’s component division, in Biberach, Bulle and Colmar. They are therefore adapted optimally to each other and form a compact, powerful system with a high degree of overall efficiency.

Common Rail injection system
The Common Rail system developed by Liebherr permits injection pressures of up to 2,200 bar, and precise multi-point injection for low-noise combustion. It has been adapted specifically to the requirements of Liebherr engines, and, through high efficiency and efficient combustion, ensures low fuel consumption and emission values.

Engine control
Liebherr’s engine management system includes a number of physical parameters of the engine for optimal control of the injection system. In the case of engines with a Liebherr exhaust gas aftertreatment system, the ECU also handles the functions required for this purpose. The engine control also incorporates integrated, intuitive, operable diagnostic software.

Exhaust gas aftertreatment
Depending on the application and national emission regulations, the technologies used in the engine are complemented by measures for reducing particles and emissions outside the engine. The systems offered by Liebherr are space-saving and simple in design in order to keep the effort for integrating them into the equipment as low as possible.
Quality and reliability

Diesel engines from Liebherr have proven their worth for decades in the toughest of situations and under extreme working conditions the world. Contributing towards their high level of reliability is not just their solid and secure design but also consistent quality assurance and process monitoring in all areas of business.
Diesel Engines by Liebherr

Reliable design
In order to endure the toughest work loads reliably, Liebherr diesel engines are distinguished by rock-solid, robust mechanical engineering. One-piece steel pistons allow high ignition pressures with a long service life. Components, optimised with the finite element method, demonstrate ideal load distribution and optimal material utilisation.

Operating safety
For high operational safety, high tensile pipes are used instead of standard fuel lines. A special oil sump and oil circuit configuration makes it possible for the machine to be employed on gradients of up to 45° with the same level of operating safety. Every electronics component also complies with high demands on safety. In engines for mining equipment, connectors in engaged and disengaged state have a protection class as high as IP6k9k.

Modern measuring devices
3D measuring machines with measuring accuracy down to the µ-range offer the best prerequisites for attaining the level of quality expected by the customer. Parts from inhouse production are checked on an ongoing basis. Parts produced externally are submitted to a receipt inspection.

One-piece steel piston
For a long service life with high combustion pressures, Liebherr employs one-piece steel pistons. Developed using modern construction and simulation programs, the piston features maximum strength even under high thermal load and can be cooled efficiently.

High-quality and long lasting materials
Aside from high safety factors, Liebherr employs the highest quality materials, such as composite bearing shells, to ensure the longevity of crankshaft bearings under increasing loads.

Quality assurance throughout
To safeguard quality, Liebherr uses a contemporary computer-assisted quality management system (CAQ system) that is implemented as early as the production creation process and covers the entire product life cycle. Statistical assessments, FMEA (failure mode and effects analysis) and CIP (continual improvement process), lean management, and the 8D method are examples of consistent process thinking.

Highest standards of quality
Before it is delivered, each engine is subjected to a performance test under operating conditions (operational test). End-of-line tests are used to ensure the product quality. Quality assurance at production sites is certified in accordance with DIN EN ISO 9001/2008 and is based on VDA standards (reliability control system). The systematic life cycle analyses are carried out according to Weibull.
Service and maintenance

Liebherr diesel engines are designed to support the highest level of service friendliness. The clear arrangement of the installed parts and a well-structured documentation facilitate the performance of maintenance work. Ongoing training makes efficient customer service operations possible. The original spare parts are available rapidly. The practically oriented assembly of maintenance and repair sets also contribute towards maximum operational readiness of the equipment.
Global organization for local availability and support

Qualifying training for technicians
The comprehensive training offering prepares our customers’ technicians to provide efficient customer support. Liebherr consequently offers hands-on basic and advanced training. In the well-equipped Training Centre the experienced trainers can also simulate extreme repair operations.

Optimal accessibility
To make maintenance and service as easy as possible, careful attention was paid during the design phase to the clear arrangement and accessibility of all service-relevant parts. As such, the oil filter is easy to reach and the cylinder heads can be replaced individually.

Spare parts availability
Parts required for maintenance and repair are stored in central Liebherr warehouses or are available directly from Liebherr service centres around the world. In this way, quick availability is assured. The quality of repair work is increased by the use of original spares and maintenance parts.

Low total cost of ownership (TCO)
Long maintenance intervals and short service operations ensure high availability of the Liebherr engines. The option of a general overhaul or reconditioning of the engines to an as-new status enables the service life of the engines to be significantly extended, thus reducing the total cost of ownership (TCO).

Service operations
When required, customers are supported by experienced Liebherr technicians worldwide in customer support operations and trained on site.

Diagnostic tools
With their self-explanatory user guidance, the electronic diagnostic tools Lidia and Skully enable a simple and rapid search for malfunctions and faults.

Maintenance and spare parts sets
Practically-orientated maintenance and repair sets, such as packs of seals, facilitate joint ordering of parts which need to be replaced together and ensure a high level of repair quality.
Exhaust gas aftertreatment

Diesel engines from Liebherr protect the environment and resources by low fuel consumption and reduced emissions. Liebherr offers exhaust gas aftertreatment systems that are adapted to the application and to legislative requirements applicable in each region respectively. For Stage IV and Tier 4 final Liebherr relies fully on an innovative SCRonly system, and for Stage V on the SCRFilter system, both in-house developments.
Simple solutions for a low total cost of ownership

SCRonly for Stage IV and Tier 4 final

In order to be able to reliably comply with the emission limit values for Stage IV and Tier 4 final, Liebherr engines only require the SCRonly system. No further subsystems, such as exhaust gas recirculation, are necessary. The SCRonly system consists of an SCR catalytic converter and an AdBlue feed with a tank, as well as various sensors for controlling the system. It is practically maintenance-free, and extremely compact and space-saving in comparison with other systems.

System optimization

As part of innovative exhaust gas aftertreatment strategies, Liebherr put the entire fuel combustion process under scrutiny. This resulted, for example, in optimized combustion chamber geometry, more efficient turbocharger loading, and optimization of engine friction loss. Together with the development of the company’s own injection systems and engine controls, this enabled the creation of soot particles to be reduced to a minimum.

Diesel exhaust fluid (DEF)

Exhaust gas aftertreatment with the SCR system requires a diluted urea solution as an additional reducing agent. This substance is distributed in Europe under the brand name Adblue® and is added to the engine’s exhaust gas. The diesel exhaust fluid is non-toxic, odourless and available around the world.

Emission reduction with SCR aftertreatment

Emission reduction aftertreatment makes it possible to markedly minimise nitrogen oxide with the aid of the innovative SCR catalytic converter system. The SCRFilter also contains a SCR-coated particulate filter.

Engine-internal measures to reduce emissions

An efficient and precisely metered fuel injection makes it possible to minimise particles of soot in the engine itself already.

SCRFilter and SCRonly for Stage V

The SCRFilter system incorporates a DOC catalytic converter, an SCR catalytic converter, and an SCR-coated particulate filter. The DOC catalytic converter is maintenance-free, and the coated particulate filter has passive regeneration, making the system reliable and easy to operate. The maintenance intervals can be stretched to more than 4,500 operating hours. The SCRFilter system requires only a little more installation space than SCRonly. For engines larger than 560 kW, SCRonly allows to reach the emission limits of both stage V and Tier 4 final.
Modular system for every emission standard

SCRonly for Stage IV and Tier 4 final
In order to comply with the emission limit values of Stage IV and Tier 4 final, Liebherr diesel engines only require the SCRonly system – no further technologies, such as particulate filters, exhaust gas recirculation, or DOC catalytic converters, are needed.

EGR technology for Stage IIIA compliant
The basic engine is equipped with exhaust gas recirculation for slightly regulated markets.

Common Rail system
The injection system from Liebherr is ideally matched to the engines – for high performance capability with low consumption.

Engine control unit
In addition to injection and the combustion process, the electronic engine control also regulates the exhaust gas aftertreatment.
SCRFilt for Stage V
The SCRFilt system designed by Liebherr incorporates a DOC catalytic converter, an SCR catalytic converter, and an SCR-coated particulate filter.

Fuel optimized engine for unregulated markets
Liebherr’s basic engines are extremely robust and work very reliably with fuels of different qualities.
Diesel engines portfolio overview
The Liebherr diesel engine portfolio covers the entire power range comprised between 130 kW up to 4.5 MW. The sixteen engines are categorised in five different series from the D93X series to the D98XX series, and from 32.5 kW per cylinder to 225 kW per cylinder. Each engine family was designed to answer market needs and simultaneously meet Liebherr’s standards of multilevel modularity, particularly regarding emissions aftertreatment strategy and spare parts compatibility.
Technical Information

Engine D934
- **Bore**: 122 mm (4.80 in)
- **Stroke**: 150 mm (5.91 in)
- **Displacement**: 7.0 dm³ (427 in³)
- **Power rating**: 130 – 200 kW (174 – 268 hp)
- **Rated speed**: 1,500 – 1,900 rpm
- **Peak Torque**: 1,245 at 1,500 rpm
- **Dry weight**: 900 kg (1,984 lbs)
- **Length**: 1,173 mm (46.18 in)
- **Width**: 918 mm (36.14 in)
- **Height**: 1,131 mm (44.53 in)

Engine D944
- **Bore**: 130 mm (5.12 in)
- **Stroke**: 150 mm (5.91 in)
- **Displacement**: 8.0 dm³ (488 in³)
- **Power rating**: 170 – 230 kW (228 – 308 hp)
- **Rated speed**: 1,500 – 1,900 rpm
- **Peak Torque**: 1,373 at 1,500 rpm
- **Dry weight**: 950 kg (2,094 lbs)
- **Length**: 1,173 mm (46.18 in)
- **Width**: 918 mm (36.14 in)
- **Height**: 1,131 mm (44.53 in)

Engine D964
- **Bore**: 135 mm (5.31 in)
- **Stroke**: 157 mm (6.18 in)
- **Displacement**: 9.0 dm³ (549 in³)
- **Power rating**: 200 – 300 kW (268 – 402 hp)
- **Rated speed**: 1,500 – 1,900 rpm
- **Peak Torque**: 1,739 at 1,400 rpm
- **Dry weight**: 735 kg (1,620 lbs)
- **Length**: 1,015 mm (39.96 in)
- **Width**: 838 mm (32.99 in)
- **Height**: 1,116 mm (43.94 in)

Engine D936
- **Bore**: 122 mm (4.80 in)
- **Stroke**: 150 mm (5.91 in)
- **Displacement**: 10.5 dm³ (641 in³)
- **Power rating**: 10.5 – 200 kW (14.7 – 268 hp)
- **Rated speed**: 200 – 320 rpm
- **Peak Torque**: 1,970 at 1,500 rpm
- **Dry weight**: 1,150 kg (2,535 lbs)
- **Length**: 1,592 mm (62.68 in)
- **Width**: 903 mm (35.55 in)
- **Height**: 1,151 mm (45.32 in)
Diesel Engines by Liebherr

Engine Specifications

<table>
<thead>
<tr>
<th>Engine</th>
<th>D946</th>
<th>D956</th>
<th>D966</th>
<th>D976</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore</td>
<td>mm (in)</td>
<td>130</td>
<td>130</td>
<td>148</td>
</tr>
<tr>
<td>Stoke</td>
<td>mm (in)</td>
<td>150</td>
<td>150</td>
<td>174</td>
</tr>
<tr>
<td>Displacement</td>
<td>dm³ (in³)</td>
<td>12.0</td>
<td>12.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Power rating</td>
<td>kW (hp)</td>
<td>250–400</td>
<td>335–536</td>
<td>440–620</td>
</tr>
<tr>
<td>Rated speed</td>
<td>rpm (rpm)</td>
<td>1,500–1,900</td>
<td>1,500–1,900</td>
<td>1,500–1,900</td>
</tr>
<tr>
<td>Peak Torque</td>
<td>Nm (lb-ft)</td>
<td>2,600 at 1,500 rpm</td>
<td>1,918 at 1,500 rpm</td>
<td>2,065 at 1,500 rpm</td>
</tr>
<tr>
<td>Dry weight</td>
<td>kg (lbs)</td>
<td>1,341</td>
<td>1,153</td>
<td>1,850</td>
</tr>
<tr>
<td>Length</td>
<td>mm (in)</td>
<td>1,592</td>
<td>1,335</td>
<td>1,545</td>
</tr>
<tr>
<td>Width</td>
<td>mm (in)</td>
<td>903</td>
<td>927</td>
<td>987</td>
</tr>
<tr>
<td>Height</td>
<td>mm (in)</td>
<td>1,151</td>
<td>1,156</td>
<td>1,160</td>
</tr>
</tbody>
</table>
Technical Information

Engine D9508
- **Bore** mm (in): 128 (5.04)
- **Stroke** mm (in): 157 (6.18)
- **Displacement** dm³ (in³): 16.2 (989)
- **Power rating** kW (hp): 350 – 505 (469 – 677)
- **Rated speed** rpm (rpm): 1,500 – 1,900 (1,500 – 1,900)
- **Peak Torque** Nm (lb-ft): 3,125 at 1,500 rpm, 2,305 at 1,500 rpm
- **Dry weight** kg (lbs): 1,600 (3,527)
- **Length** mm (in): 1,692 (66.61)
- **Width** mm (in): 1,112 (43.78)
- **Height** mm (in): 1,350 (53.15)

Engine D9512
- **Bore** mm (in): 128 (5.04)
- **Stroke** mm (in): 157 (6.18)
- **Displacement** dm³ (in³): 24.2 (1,477)
- **Power rating** kW (hp): 565 – 750 (758 – 1,006)
- **Rated speed** rpm (rpm): 1,500 – 1,900 (1,500 – 1,900)
- **Peak Torque** Nm (lb-ft): 4,675 at 1,500 rpm, 3,448 at 1,500 rpm
- **Dry weight** kg (lbs): 2,050 (4,519)
- **Length** mm (in): 1,856 (73.07)
- **Width** mm (in): 1,236 (48.66)
- **Height** mm (in): 1,314 (51.73)

Engine D9612
- **Bore** mm (in): 135 (5.31)
- **Stroke** mm (in): 157 (6.18)
- **Displacement** dm³ (in³): 27.0 (1,648)
- **Power rating** kW (hp): 650 – 1,100 (872 – 1,475)
- **Rated speed** rpm (rpm): 1,500 – 1,900 (1,500 – 1,900)
- **Peak Torque** Nm (lb-ft): 6,230 at 1,500 rpm, 8,335 at 1,500 rpm
- **Dry weight** kg (lbs): 2,350 (5,181)
- **Length** mm (in): 1,839 (72.40)
- **Width** mm (in): 1,262 (49.68)
- **Height** mm (in): 1,338 (52.68)

Engine D9616
- **Bore** mm (in): 135 (5.31)
- **Stroke** mm (in): 157 (6.18)
- **Displacement** dm³ (in³): 36.0 (2,197)
- **Power rating** kW (hp): 800 – 1,450 (1,073 – 1,944)
- **Rated speed** rpm (rpm): 1,500 – 1,900 (1,500 – 1,900)
- **Peak Torque** Nm (lb-ft): 8,485 at 1,500 rpm, 11,379 at 1,500 rpm
- **Dry weight** kg (lbs): 3,200 (7,055)
- **Length** mm (in): 2,356 (92.76)
- **Width** mm (in): 1,338 (52.68)
- **Height** mm (in): 1,378 (54.25)
<table>
<thead>
<tr>
<th>Engine</th>
<th>Bore (mm)</th>
<th>Stroke (mm)</th>
<th>Displacement (dm³)</th>
<th>Power rating (kW (hp))</th>
<th>Rated speed (rpm)</th>
<th>Peak Torque (Nm (lb-ft))</th>
<th>Dry weight (kg (lbs))</th>
<th>Length (mm (in))</th>
<th>Width (mm (in))</th>
<th>Height (mm (in))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9620</td>
<td>135</td>
<td>157</td>
<td>45.0</td>
<td>1,100 – 1,900</td>
<td>1,500 – 1,900</td>
<td>10,000 at 1,500 rpm</td>
<td>4,100</td>
<td>3,069</td>
<td>1,414</td>
<td>1,564</td>
</tr>
<tr>
<td>D9812</td>
<td>175</td>
<td>215</td>
<td>62.0</td>
<td>1,250 – 2,700</td>
<td>1,200 – 1,900</td>
<td>15,690 at 1,350 rpm</td>
<td>8,600</td>
<td>2,661</td>
<td>1,777</td>
<td>2,125</td>
</tr>
<tr>
<td>D9816</td>
<td>175</td>
<td>215</td>
<td>82.7</td>
<td>2,000 – 3,600</td>
<td>1,200 – 1,900</td>
<td>19,625 at 1,350 rpm</td>
<td>11,700</td>
<td>3,240</td>
<td>1,777</td>
<td>2,125</td>
</tr>
<tr>
<td>D9820</td>
<td>175</td>
<td>215</td>
<td>103.4</td>
<td>2,700 – 4,500</td>
<td>1,200 – 1,900</td>
<td>23,550 at 1,350 rpm</td>
<td>14,700</td>
<td>3,680</td>
<td>1,777</td>
<td>2,125</td>
</tr>
</tbody>
</table>

Under development
Examples of use
Agriculture

Examples of agricultural applications where Liebherr components can be used include machines which cover the entire harvest cycle in agriculture: forage harvester, combine harvester, beet or potato harvesters or tractors. Rising fuel costs and ever stricter emissions regulations pose new challenges. In order to meet these requirements, Liebherr focuses on increased efficiency and lower fuel consumption in the development of our diesel engines.

Forestry

Different machines are completing diverse tasks in forestry and are exposed to high dynamic loads: chippers, feller bunchers, special forestry tractors, forwarders, timber trucks, skidders, and forest harvesting machines. To meet the requirements of these highly specialized machines, Liebherr is offering diesel engines with a robust design and a long life service guarantee.

Construction

Liebherr engines are developed for off-highway equipment. A wide variety of mobile machines, such as excavator loader, crawler loader, wheeled excavators, wheel loaders, etc. are deployed within the building, construction, and civil engineering industry. Dust, dirt, water, and extreme cold and heat require robust and reliable components. Liebherr offers a comprehensive diesel engines product range to meet these tough demands.

D966

With its high efficiency as well as its robust design, the D966 engine fits perfectly the agriculture and construction applications.

D964

The D964 is offering a high efficiency as well as a low fuel consumption, which makes it ideal for agriculture applications for example.

D9512

With its robust design, the D9512 easily deals with extreme environments. As such, the D9512 answers the construction industry requirements.
Examples of use
Mining
Diesel Engines from Liebherr prove themselves cost effective in quarrying of raw materials in the mining segment. We develop and manufacture resilient components with high availability for deployment in surface mining and deep mining applications such as mining excavators, hauling trucks, wheel loaders or bucket excavators. Mining work requires machines with compact dimensions. In this case, Liebherr Diesel Engines withstand dust and dirt as well as extreme temperatures. At the same time, they comply with the strict safety regulations that apply to deep mining.

Oil & Gas
Liebherr well servicing engines are built to last. They are manufactured to withstand the toughest working conditions on the planet while being easy to maintain. With a low weight and the assurance of reliable performance over their lifespan, Liebherr diesel engines meet the technical requirements of oil & gas applications such as well stimulation, coil tubing, and cementing.

Power Generation
The engine architecture, injection system and engine management of Liebherr Diesel G-Drive engines, have been designed to achieve optimal generator set performance. These engines offer a high load acceptance and high power density with optimized fuel consumption, while meeting all worldwide emissions standards and requirements.

D9508
With its high load acceptance, its great power and efficiency the D9508 is achieving an optimal generator set performance.

D9620
The D9620 offers the highest power weight ratio in its class. Which makes it perfect for the Oil & Gas applications for example.

D9812
With the best cylinder power density of its class, the D9812 is offering better productivity for mining applications for example.
Liebherr Components

From A to Z – the components division of the Liebherr Group offers a broad range of solutions in the area of mechanical, hydraulic, electric and electronic drive system and control technology. The efficient components and systems are produced at a total of ten production sites around the world to the highest standards of quality. Central contact persons for all product lines are available to our customers at Liebherr-Components AG and the regional sales and distribution branches.

Liebherr is your partner for joint success: from the product idea to development, manufacture and commissioning right through to customer service solutions like remanufacturing.

components.liebherr.com