Data sheet **Axial piston pump DPVO**

The Liebherr axial piston pumps in the DPVO series are designed as swashplates for open circuits.

These variable displacement pumps are available in nominal sizes ranging from 108 to 215. The nominal pressure of the units is 5,802 psi (400 bar) and the maximum pressure is 6,527 psi (450 bar) absolute.

These pumps for open circuits with inverted piston design were specially developed for high pressure applications.

They stand out with a 22° swivel angle and high pressure capacity, as well as 100 percent through-drive capability. They can be combined with all common controls.

In nominal sizes 165 and 215, the variable displacement pump is also available with impeller. This achieves a higher self-suction speed and a higher displacement.

Valid for:

DPVO 108 DPVO 140 DPVO 165/DPVO 165i DPVO 215/DPVO 215i

Features:

D series Open circuit

Control types:

Various control types can be selected

Pressure range:

Nominal pressure $p_N = 5,802 \text{ psi} (400 \text{ bar})$ Maximum pressure $p_{max} = 6,527 \text{ psi} (450 \text{ bar})$

Document identification:

ID number: 10150821 Date of issue: 04/2023 Authors: Liebherr - Abteilung VH13 Version: 1.4

Table of contents

1 T	ype code	3
2 T	echnical data	6
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Table of values Direction of rotation Permitted pressure range Hydraulic fluids Temperature Shaft lip seal Housing flushing Add-on parts Gear pump	6 8 9 11 12 18 18 18 18 20
3 A	ctivation and control type	21
3.1 3.2 3.3 3.4	Control types Standard hydraulic diagrams Control functions Electrical components	21 22 40 51
4 Ir	nstallation conditions	55
4.1 4.2	General information about project planning Installation variants	55 57
5 D	imensions	61
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.16 5.17 5.18 5.17	Nominal size 108, clockwise rotation Nominal size 108, mounting flange Nominal size 108, shaft end Nominal size 140, clockwise rotation Nominal size 140, mounting flange Nominal size 140, shaft end Nominal size 165, clockwise rotation Nominal size 165, clockwise rotation Nominal size 165, mounting flange clockwise rotation Nominal size 165, mounting flange anti-clockwise rotation Nominal size 165, shaft end Nominal size 165, shaft end Nominal size 215, clockwise rotation Nominal size 215, clockwise rotation Nominal size 215, mounting flange Nominal size 215, mounting flange Nominal size 215 and 215i, shaft end Through-drive ANSI B92.1a Through-drive DIN 5480 Multiple unit in tandem design	61 63 64 65 67 68 70 72 74 77 78 79 81 83 85 86 87 90 90

1 Type code

DPV	0		/				1				Α				0		
1.	2.	3		4.	5.		6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	
1. Pump t	уре																
D series / p	ump / va	ariable	displ	acemer	t								DPV				
2. Type of	fcircui	t															
Open													0				
3. Nomina	al size	(NS)															
										108	140	16	5	215			
4. Residua	al disp	lacen	nent	V _{g mi}	ı												
0 - 15% of V	_{g max} / e	nter va	alue ir	n cm ³ /r	θV												
5. Activat	ion / c	ontro	ol ty	ре													
Pressure cu	t-off												I [D	A	
Electro-prop	ortional	(positi	ive ch	aracter	istic) / pre	essure	cut-off					•	I		EL1	- DA	
Electro-proportional (negative characteristic) / pressure cut-off]		EL2	- DA	
Electro-prop pressure cut	oortional t-off wit	(positi h overr	ive ch ride	aracter	istic) /					•		-	-	•	EL1 -	DAl	
Electro-prop	ortional	(positi	ive ch	aracter	istic) / loa	d sens	ing						I		EL1 - LS		
Electro-prop	ortional	(negat	tive c	haracte	ristic) / loa	ad sens	sing]		EL2	- LS	
Electro-prop load sensing	oortional g with Δp	(positi lower	ive ch ring	aracter	istic) /								1		EL1 -	LS1	
Load sensin	g / pres	sure cu	ut-off									•	I		LS -	DA	
Load sensin	g / pres	sure cu	ut-off	with ov	erride]		LS -	DA1	
Load sensin	g with ∆	p lowe	ring /	′ pressu	re cut-off	with ov	/erride						1		LS1 -	DAl	
Fan drive													1		LU		
Power contr	ol]		LR		
Power contr	ol, overr	ide opt	tion										1		LR1		
Power contr	ol / load	l sensi	ng												LR ·	- LS	
Power contr	ol, overr	ide opt	tion (p	positive	characteri	istic) /	load se	nsing	_						LR1	- LS	
Power contr	ol, overr	ide opt	tion (r	negativ	e charactei	ristic) /	load se	ensing]		LR2	- LS	
Power contr	ol / load	l sensii	ng wi	th ∆p lo	wering				_				1		LR -	LS1	
Power contr	ol, overr	ide opt	tion /	load se	nsing with	n ∆p lov	vering		_	•					LR1 ·	- LS1	
Power control, override option / steering pressure-proportional (negative characteristic) / pressure cut-off							e				ו		LR1 - SI	D2 - DA			
Power control / steering pressure-proportional (negative characteristic) / pressure cut-off							/				1		LR - SD2 - DA				
Power control / steering pressure-proportional (negative characteristic) / pressure cut-off with override							/				1		LR - SD	2 - DA1			
Power control, override option / steering pressure-proportional (negative characteristic) / pressure cut-off with override							e				1	-	LR1 - SD2- DA				
Steering pre	essure-pi	roporti	onal (positiv	characte	ristic)							1		SD1		
Total perform (positive cha	mance re aracteris	egulati tic)	ion / s	steering	pressure-	propor	tional]		SL -	SD1	
(positive characteristic) Total performance regulation with override / steering pressure-proportional (positive characteristic)												-]	-	SL1 -	SD1	

1 Type code

				108	140	165	215	
6. Desigr	ו							-
						1		
7. Directi	ion of rota	ation (viewed toward	Is the drive shaft)					
Right, witho	out impeller							R
Left, withou	ut impeller							L
Right, with	impeller							R
Left, with ir	mpeller							L
8. Mount	ing flange	e						
			SAE 1					11
Diesel engi	ne flange SA	F. 1617a	SAE 2					12
Dieserengi	ne nange or		SAE 3					13
			SAE 4				-	14
Mounting f	lange SAF 17	766	SAE D				-	24
		SAE E	-	-	-		25	
9. Shaft	end							
Splipod chr	oft		DIN 5480					1
Spuned she	<u> </u>		ANSI B92.1a					2
10. Conn	ections							
ISO 6162-2	/ SAE J518-	2, high-pressure connecti	on 6000 psi			Α		
11. Add-o	on parts							
Without ad	d-on parts							0
With impell	ler				-	-		
12. Gear	pump							
Without ge	ar pump							00
With gear p	oump, V _a = 24	4 cm ³ , enter value in cm ³ /	/rev					24
13. Throu	ah-drive							
Star centring	ndard diameter	Hub for shaft spline	Fastening thread position according to SAE J744					
Without thr	rough-drive	•						0000
		ANSI B92.1a	Type K Basic (2-hole)					B11D
(101 (SAE B	7/8 in 13T 16/32DP	Type S Basic (4-hole)					B12D
0.101.0		ANSI B92.1a	Type K Basic (2-hole)					B21D
SAE BB 1 in 15T 16/32DP		Type S Basic (4-hole)					B22D	
		ANSI B92.1a	Type K Basic (2-hole)					C11D
<i>(</i> 107	SAEU	1 1/4 in 14T 12/24DP	Type S Basic (4-hole)					C12D
/210		ANSI B92.1a	Type K Basic (2-hole)					C21D
	SAE UU	1 1/2 in 17T 12/24DP	Type S Basic (4-hole)					C22D

1 Type code

				108	140	165	215	
			Type K Basic (2-hole)					D11D
		1 3/4 in 13T 8/16DP	Type S Basic (4-hole)					D12D
			2- & 4-hole mixed					D13D
		5111 5 (0.0	Type K Basic (2-hole)					D31D
Ø152.4	Ø152.4 SAE D	DIN 5480 W40x2x18x9q	Type S Basic (4-hole)					D32D
		2- & 4-hole mixed					D33D*	
			Type K Basic (2-hole)					D41D
		DIN 5480 W45x2x21x9q	Type S Basic (4-hole)					D42D
		3	2- & 4-hole mixed					D43D*
		ANSI B92.1a	Type K Basic (2-hole)					E11D
0145 1		1 3/4 in 13T 8/16DP	Type S Basic (4-hole)				E12D	
0105.1	SAL L	DIN 5480	Type K Basic (2-hole)					E31D
	W50x2x24		Type S Basic (4-hole)					E32D*

Note *) D33

*) D33D, D43D or E32D are to be written in type code of hydraulic pump 1 (when used as a multi-circuit pump in tandem design) with DIN 5480 shaft input of hydraulic pump 2.

W

14. Valve

Without valve	0					
15. Sensors						
Without sensor	-				0	

With angle sensor	With	angle sensor
-------------------	------	--------------

- = Available
- I = On request
 - = Not available

Note

Contact addresses for queries are provided on the back of this document.

2.1 Table of values

						10	55	215			
Nominal size			108	140	without impeller	with impeller	without impeller	with impeller			
		V _{g max}	cm ³	107.7	140.2	167.8	167.8	216.6	216.6		
Displacement v	volume	V _{g min}	cm ³		0 - 15% of V _{g max} > 15% of V _{g max} on request						
Standard version Max. speed at V	n _{max}	rpm	2100	2100	2100	2300	2000	2600			
Volume flow at	qv _{max}	l/min	226	294	352	386	433	563			
Drive power at ∆p = 400 bar	qv _{max} and	p _{max}	kW	151	196	235	257	289	375		
Drive torque at ∆p = 400 bar	$V_{g max}$ and	M _{max}	Nm	685	892	1067	1067	1378	1378		
Shaft DIN 5480		Nm/	rad	157000	228800	247700	247700	320900	320300		
rigidity ANSI B92.1a-1976 1 3/4 IN 13T 8/16 DP		Nm/rad		-	195600	230400	-	226200	225100		
Driving gear moment of inertia J _{TW}			kgm ²	0.015	0.024	0.031	0.031	0.048	0.047		
Weight (approx.) m k				56	65	74	92	125	125		

Note

The stated values (maximum values) are theoretical values, rounded, and without efficiencies or tolerances.

*) These values apply at an absolute pressure of 1 bar at the suction channel.

Higher suction pressure limits possible by increasing the suction pressure p_{abs} at the suction channel.

**)For nominal sizes 108 and 140, a high speed version, max. speed at V_{g max} = 2300 rpm, is available. Please specify explicitly when ordering. Values upon request.

2.1.1 Maximum radial and axial load of the driving shaft

Nominal size	108	140	165	215		
Max. radial force	F _{r max}	Ν	Values upon request			
Max. axial force	F _{a± max}	Ν	1000	2000	3000	3000

DB-V-001

Note

The radial and axial loads depend on the load cycle, e.g. pressure, rpm and direction of force. If planning a belt drive or continuous axial and/or radial forces are expected, please contact Liebherr.

2.1.2 Maximum input and through drive torques

Note

Theoretical rounded values, not taking into account efficiency, tolerances, contamination of the hydraulic fluid or deflection of the driving shaft.

					10	65	2	15
Nominal size	108	140	without impeller	with impeller	without impeller	with impeller		
Max. torque of drive shaft input								
(installed without lateral force) at shaft end DIN 5480	M _{E max}	Nm	1265	1830	1950	1950	2940	2940
Max. torque of drive shaft input								
(installed without lateral force) at shaft end ANSI B92.1a	M _{E max}	Nm	-	1700	1700	1700	1700	1700
Max. torque of through drive	M _{D max}	Nm	1265	1830*	1950*	1100	1810*	2200*

*) $M_{E max}$ at shaft end ANSI B92.1a must be taken into account

Ml	Torque of axial piston pump 1
M2	Torque of axial piston pump 2
M3	Torque of axial piston pump 3
Pl	Axial piston pump 1

- M_E = M1+M2+M3 1) $M_{E} < M_{E max}$
- $M_D = M2+M3$ $M_D < M_D max$ 2)

2.2 Direction of rotation

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

The direction of rotation is stated with view of the driving shaft, as shown in the figure.

R right = clockwise

L left = anti-clockwise

P2	Axial piston pump 2
M _E ¹	Input torque
M_D^2	Through drive torque
-	-

2.3 Permitted pressure range

2.3.1 Operating pressure

Note

Variant I: Nominal size 108 / 140 / 165 Standard with one high-pressure connection A.

Variant II: Nominal size 215 standard with two opposite high-pressure connections A1 / A2.

Operating pressure at connection A / A1 / A2								
Nominal size		108 to 215						
Minimum prossure**	V _{g min}	nHD .	bar	6				
	V _{g max}	min min	Dai	18				
Nominal pressure (fatigue resistant)	pHD _N	bar	400					
Maximum pressure (single operating period)	pHD _{max}	bar	450					
Single operating period at maximum pressure pHD _{max}	t	S	< 1					
Total operating period at maximum pressure pHD _{max}		t	OH*	300				
Rate of pressure change	of pressure change							
Suction pressure at port S								
Minimum absolute pressure	pS _{min}	bar	0.8 ¹					
Maximum absolute pressure	pS _{max}	bar	2 ¹					

*) OH = operating hours

- **) There must be minimum pressure in the working circuit at connection A to ensure adequate lubrication of the driving gear in all swivel angles during operation.
- ¹) Other values upon request

DANGER

Failure of the fastening screws at working connection A / A1 / A2

Danger to life. Use fastening screws of strength category 10.9.

2.3.2 Housing, leakage oil pressure

Characteristic curve	Nominal size	Shaft diameter (mm)			
	108	45			
	140 / 165	50			
_	215	60			

Leakage oil pressure at connection T1 / T2							
Nominal size			108 to 215				
Permanent absolute leakage oil pressure	р _L	bar	3				
Maximum absolute pressure	pL _{max}	bar	6*				

*) Short pressure peaks of max. 10 bar abs. are permitted (t < 0.1 s).

Note

The pressure in the axial piston unit must always be higher than the external pressure on the shaft lip seal.

2.4 Hydraulic fluids

2.4.1 General information

Selection of the appropriate hydraulic fluid is significantly influenced by the anticipated operating temperature relative to the ambient temperature, which is equivalent to the tank temperature.

ATTENTION

You must not mix different mineral oil hydraulic fluids!

Minimum required quality

Specification	
LH-00-HYC3A	
LH-00-HYE3A	

Note

For additional information, see: <u>www.liebherr.com</u> (brochure: Lubricants and operating fluids) Alternatively: contact <u>lubricants@liebherr.com</u>.

2.4.2 Fill quantity

Nominal size	Fill quantity			
108 to 215	Values upon request			

Note

Before commissioning, the axial piston unit must be filled with oil and vented.

This process must be checked and repeated if necessary during operation and after long downtimes!

2.4.3 Filtering

- Filtering of the hydraulic fluid is necessary to maintain the specified purity class "21/17/14 according to ISO 4406" under all circumstances.
- The hydraulic fluid is filtered by the device-specific use of oil filters in the hydraulic system.
- Cleaning and maintenance intervals for the oil filters and the entire oil circuit depend on use of the unit: see the device-specific operating instructions.

2.5 Temperature

Note

The optimum operating range of the hydraulic fluid of 16-36 mm^2/s for Liebherr Hydraulic HVI (ISO VG 46) is from 32° to 62 °C.

If the axial piston unit is operated in the optimum operating range of the hydraulic fluid within the permitted operating conditions and operating limits, it is low-wear and is protected against temperature-dependent ageing. From a viscosity < 11 mm^2 /s (for Liebherr Hydraulic HVI (ISO VG 46) = 80 °C), a halving of the service life of the hydraulic fluid must be assumed for every 10 °K increase in temperature.

If the optimum range cannot be met, a hydraulic fluid with a more suitable viscosity range must be selected or the hydraulic system must be preheated or cooled.

To prevent temperature shocks, the temperature difference between the hydraulic fluid and the axial piston unit must be kept to less than 25 °C. This can be achieved by, among other things, a continuous flow through all axial piston units in the hydraulic system.

2.5.1 Operating limits

Maximum values:

Maximum leakage oil temperature: 115 °C.

ATTENTION

The temperature should be assumed to be highest in the drive shaft bearing area (rotary shaft lip seal and bearing). Experience has shown this temperature to be 10-15 °K higher than the leakage oil temperature.

Low temperatures: (For additional information see: 2.5.2 Low temperatures, page 12)

Note

The operating limits of Liebherr hydraulic fluids are provided in the viscosity chart included below to allow users to make an informed choice. (For additional information see: 2.5.6 Viscosity chart, page 17)

2.5.2 Low temperatures

ATTENTION

When temperatures drop below freezing point, the sealing lip of the rotary shaft lip seal may freeze if it becomes wet or frosted. This can cause the sealing lip to tear off when the axial piston unit is started. The risk must be prevented by preheating/thawing the rotary shaft lip seal/the shaft.

Note

At temperatures at which there is already a risk of hardening from freezing, the frictional heat may be sufficient to keep the seal elastic or to bring it to a functional state quickly enough after the start of movement.

Overview

Temperature [°C]	Phase	Viscosity [mm ² /s]	Note
< -50 °C	Idle state	_*	No storage or operation permitted
< -40 °C	Idle state	_**	No operation permitted, preheat to at least -40 °C, select appropriate hydraulic fluid

*) Idle state < -50 °C

ATTENTION

Temperatures < -50 °C on the system = no operation of the axial piston unit permitted. Risk of damaging the sealing elements of the axial piston unit. Avoid temperatures < -50 °C.

**) Idle state < -40 °C

ATTENTION

Temperatures < -40 °C on the system = no operation of the axial piston unit permitted. Functioning of the sealing elements in the axial piston unit is not guaranteed at temperatures < -40 °C. Preheat the axial piston unit and tank to at least -40 °C and use Liebherr Hydraulic Plus Arctic/ Liebherr Hydraulic FFE 30 hydraulic fluid with a viscosity < 1600 mm²/s. (For additional information see: 2.5.6 Viscosity chart, page 17)

Regardless of the viscosity < 1600 mm^2/s , the axial piston unit must be operated for at least 60 s under the following conditions before entering the cold start including the warm-up phases or on warm start:

- Operating pressure range: $p_{HD min} \le p_{HD} \le 50$ bar
- Speed: n_{min} ≤ n ≤ 1000 rpm, or idle speed of the drive motor*
- Displacement volume: $V_{g min} \le V_g \le 15\%$ of $V_{g max}$
- Do not move any of the equipment.
- *) When using a drive with higher speeds than required in the conditions (e.g. an electric motor), please consult Liebherr, stating the potential speed(s).

After the 60 s have elapsed, determine the viscosity using the available temperature values and the viscosity chart, select the appropriate warm-up phase and operate the axial piston unit in the defined period and appropriate conditions (see Warm-up phases).

Overview

Temperature [°C]	Phase	Viscosity [mm ² /s]	Note
			The current viscosity of the hydraulic fluid before start-up determines the type of start.
> -40 °C	Cold start	1600-400	In the range of 1600-400 [mm ² /s], it is a cold start. Entry into the warm-up phase must be selected according to the viscosity and the further warm-up phases must be run through according to the time specifications and operat- ing conditions.
	Warm-up phase "I"	1600-1200	Observe conditions and measures (see Warm-up phase "I")
For additional informa	Warm-up phase "II"	1200-1000	Observe conditions and measures (see Warm-up phase "II")
tion see: 2.5.6 Viscosity	Warm-up phase "III"	1000-400	Observe conditions and measures (see Warm-up phase "III")
chart, page 17	Normal operation	400-16*	Axial piston unit, fully loadable (see Normal operation)
	Optimum operating range	36-16	Axial piston unit, fully loadable (see Normal operation)

*) At maximum leakage oil temperature, the viscosity must not fall below 8 mm²/s (for a short period, i.e. < 3 minutes, it can be 7 mm²/s).

2.5.3 Cold start with subsequent warm-up phases

ATTENTION

Before cold start, the viscosity* must be determined on the basis of the oil temperature (e.g. tank temperature) in order to avoid damage to the axial piston units from excessive viscosity* of the hydraulic fluid. At a viscosity* > 1600 mm²/s, the hydraulic system must be preheated.

Using the determined viscosity*, the type and duration of the warm-up must be followed, using the cold start chart**.

*) For additional information see: 2.5.6 Viscosity chart, page 17

The following conditions apply:

- Viscosity: 1600-1200 mm²/s = operate the axial piston unit for 600-360 s with measures listed for Warm-up phase "I".
- Viscosity: 1200-1000 mm²/s = operate the axial piston unit for 360-120 s with measures listed for Warm-up phase "II".
- Viscosity: 1000-400 mm²/s = operate the axial piston unit for 120-60 s with measures listed for Warm-up phase "III".
- Viscosity: 400-16 mm²/s = operate the axial piston unit for 60 s with measures listed for "Warm start". This means that even at \leq 400 mm²/s, the measures must be applied for at least 60 s.

**) Cold start chart

2.5.4 Warm-up phases

Note

Depending on the current viscosity, continue with the corresponding warm-up phase after the cold start. In the subsequent warm-up phases, the operating parameters may be increased to allow the hydraulic system to warm up rapidly.

Warm-up phase " I "

Condition:

Viscosity: 1600-1200 mm²/s = operate the axial piston unit with measures listed below until a viscosity of 1200 mm²/s is reached.

Measures:

- Operating pressure range: $p_{HD min} \le p_{HD Warm-up} ||| \le 200$ bar
- Speed: $n_{min} \le n_{Warm-up "I"} \le 50\%$ of n_{max}
- Displacement volume: V_{g min} ≤ V_{g Warm-up "I"} ≤ 15% of V_{g max}

Warm-up phase "<u>II</u>"

Condition:

Viscosity: 1200-1000 mm²/s = operate the axial piston unit with measures listed below until a viscosity of 1000 mm²/s is reached.

Measures:

- Operating pressure range: p_{HD min} ≤ p_{HD Warm-up} "II" ≤ 200 bar
- Speed: n_{min} ≤ n_{Warm-up} "II" ≤ 50% of n_{max}
- Displacement volume: V_{g min} ≤ V_{g Warm-up} "II" ≤ 15-30% of V_{g max}

Warm-up phase "III"

Condition:

Viscosity: 1000-400 mm²/s = operate the axial piston unit with measures listed below until a viscosity of 400 mm²/s is reached.

Measures:

- Operating pressure range: p_{HD min} ≤ p_{HD Warm-up} "III" ≤ p_{HD max}
- Speed: $n_{min} \le n_{Warm-up}$ "III" $\le 50\%$ of n_{max}
- Displacement volume: V_{g min} ≤ V_{g Warm-up} "III" ≤ 30-100% of V_{g max}

<u>Warm start</u>

Condition:

Viscosity: 400-16 mm²/s = operate the axial piston unit for at least 60 s, even at viscosity < 400 mm²/s, with measures listed below.

Measures:

- Operating pressure range: $p_{HD min} \le p_{HD} \le 50$ bar
- Speed: n_{min} ≤ n ≤ 1000 rpm, or idle speed of the drive motor
- Displacement volume: V_{g min} ≤ V_g ≤ 15% of V_{g max}

2.5.5 Normal operation

Note

Optimum operating range: 16-36 mm²/s

The viscosity must not fall below 8 mm²/s (for a short period, thud < 3 minutes, 7 mm²/s) at maximum leakage oil temperature.

Note

In the viscosity range of 400-8 mm^2/s , the axial piston unit can be put under full load.

- Operating pressure range: $p_{HD min} \le p_{HD} \le p_{HDmax}$
- Speed: $n_{min} \le n \le n_{max}$
- Displacement volume: $V_{G min} \le V_G \le V_{g max}$

2.5.6 Viscosity chart

2.6 Shaft lip seal

2.6.1 General information

The rotary shaft lip seals (RWDR) are special sealing elements which permit a specific housing pressure. In order to ensure that the tribological system functions optimally, the operating conditions must be adhered to.

Sealing edge temperature varies due to the following factors in the housing:

- Circumferential speed
- Hydraulic fluid temperature
- Lubricating medium
- Pressure build-up

The sealing edge temperature could be 20 °C to 40 °C above the leakage oil temperature of a hydraulic axial piston unit.

2.7 Housing flushing

Under various operating conditions, e.g. a very low flow rate over a longer period of time, may cause a critical temperature rise in the housing.

Limit values: (For additional information see: 2.5 Temperature, page 12).

If this is the case, the housing must be flushed, so the "hot" hydraulic oil is directed to an external cooler where it cools down and from where it is fed back into the hydraulic system.

The flushing volume Q_V in l/min is to be individually set for each nominal size in connection with the application and is the responsibility of the device or system manufacturer.

2.8 Add-on parts

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

2.8.1 Charge pump (impeller)

Charge pumps for variable displacement single pumps are currently available only for nominal sizes 165 and 215. They are designed as radial and centrifugal pumps with axial impeller. Charge pumps for other nominal sizes on request.

0 Without charge pump (impeller)

I With charge pump (impeller)

Principle of charge pump

The hydraulic fluid fed in through the suction pipe connection on the connecting plate is set into rotation by the attached propeller wheel when the driving shaft is spinning, is accelerated by centrifugal force and pushed to the outside.

The hydraulic oil exits the impeller radially, i.e. perpendicular to the drive shaft, at high velocity and higher delivery pressure, and is fed in a channel to the suction kidney of the control plate.

Thus more delivery flow and higher delivery pressure are applied simultaneously to the suction kidney of the control plate, resulting in the axial piston unit to be "charged" with power.

The charge pump increases the suction pressure of the drive, which facilitates suctioning hydraulic fluid with high viscosity and benefits cold starts with minimal wear.

Note

To increase the suction pressure of the drive, a tank charging method was used in the past, where an overpressure was produced in the tank by exhaust gas from the combustion engine. This approach can be replaced by using the charge pump.

2.8.2 Hydraulic diagram with charge pump

1 Charge pump

2.9 Gear pump

A gear pump can be implemented only in combination with through-drive = B11D or 0000. A joint gear pump on hydraulic pump 2 is recommended for multi-circuit pumps in tandem design, (For additional information see: 5.19 Multiple unit in tandem design, page 92).

1 Gear pump

1

X ANSI B92.1a-1976 7/8 spline shaft size 30° engagement angle 13 teeth 16/32 pitch cl.7

3.1 Control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note

For each control type or function, only one nominal size is illustrated, typically nominal size 215. Special applications and designs are not included in this chapter. Always use the information from the installation drawing provided or contact Liebherr.

The following applies to all control types:

DANGER

The spring-guided reset in the regulating valve is not a safety device!

Contaminants in the hydraulic system such as chips or residual dirt from parts of the device or system can cause blockages at undefined points of various control components.

Under some circumstances, the machine operator's specifications can no longer be implemented. It is the device or system manufacturer's responsibility to install a safety device e.g. an emergency stop.

DANGER

The regulating valve is not a safety device against overload!

It is the device or system manufacturer's responsibility to install protection against overload, e.g. a pressure limiting valve. Pressure limiting valves are available in the portfolio and can be ordered separately.

The following modular control types can be ordered for the DPVO series:

3.1.1 Mechanical-hydraulic control

- DA- control, see chapter 3.2.16
- LS-DA- control, see chapter 3.2.16
- LR- control, see chapter 3.2.6
- LR1- control, see chapter 3.2.7
- LR-LS- control, see chapter 3.2.8
- LR1-LS- control, see chapter 3.2.9
- LR-LS1- control, see chapter 3.2.10
- LR1-LS1- control, see chapter 3.2.11
- LR-SD2-DA- control, see chapter 3.2.12
- LR1-SD2-DA- control, see chapter 3.2.13
- LR-SD2-DA1- control, see chapter 3.2.14
- LR1-SD2-DA1- control, see chapter 3.2.15
- SL-SD1- control (for multi-circuit pumps), see chapter 3.2.17
- SL1-SD1- control (for multi-circuit pumps), see chapter 3.2.18

3.1.2 Electric-hydraulic control

- LU- control, see chapter 3.2.1
- EL1-DA- control, see chapter 3.2.3
- EL1-DA1- control, see chapter 3.2.4
- EL1-LS- control, see chapter 3.2.5

Further control types on request.

3.2 Standard hydraulic diagrams

3.2.1 LU- control

HF7-DB-021

А	Working connection SAE J 518	М	Regulated high pressure pReg
Fa	Auxiliary pressure connection ISO 9974-1	S	Suction line SAE
Fa2	Auxiliary pressure connection ISO 9974-1	Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)

Key features

Electronic control with pulse-width modulated control current (PWM signal 100-160 Hz, U= 24 V, I_{max} = 750 mA), see chapter 3.3.8 The setting range is between 150 and 700 mA.

3.2.2 DA- control

12
Ť
Ó
ñ
Ā
ு

А	Working connection SAE J 518	S	Suction line SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1	Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg	X2	External high pressure ISO 9974-1

3.2.3 EL1-DA- control

HF7-DB-010

А	Working connection SAE J 518		S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1		Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg		-	-

Key features

Electronic control with pulse-width modulated control current (PWM signal 100-160 Hz, U= 24 V), see chapter 3.3.3. The setting range is between 200 and 650 mA.

3.2.4 EL1-DA1- control

Key features

A

Fa

Μ

An externally supplied DA1 override signal (0-13.5 bar) is applied to port X5.

3.2.5 EL1-LS- control

HF7-DB-015

А	Working connection SAE J 518		S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1		Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg		X2	LS pressure ISO 9974-1

Key features

An externally supplied LS pressure is applied to port X2.

3.2.6 LR- control

HF7-DB-070

А	Working connection SAE J 518		S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1		Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg		-	-

Key features Standard fixed LR setting.

3.2.7 LR1- control

HF7-DB-071

А	Working connection SAE J 518	S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1	Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg	X3	LR oversteering pressure connection ISO 9974-1

Key features

An externally supplied LR oversteering pressure is applied to port X3.

3.2.8 LR-LS- control

HF7-DB-061

А	Working connection SAE J 518		S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1		Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg		X2	LS pressure ISO 9974-1

Key features

An externally supplied LS pressure is applied to port X2.

3.2.9 LR1-LS- control

HF7-DB-017

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X2	LS- pressure ISO 9974-1
X3	LR oversteering pressure connection ISO 9974-1
-	-

Key features

An externally supplied LS pressure is applied to port X2.

An externally supplied LR oversteering pressure is applied to port X3.

3.2.10 LR-LS1- control

HF7-DB-075

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE 3"

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X2	LS pressure ISO 9974-1
X4	Δp lowering pressure pX4
-	-

Key features

An externally supplied regulating pressure pX4 is applied to port X4. An externally supplied LS pressure is applied to port X2.

Note The Δp lowering is currently only available as an option for the LR - LS control.

3.2.11 LR1-LS1- control

HF7-DB-066

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE 3"

т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X2	LS pressure ISO 9974-1
X3	LR oversteering pressure connection ISO 9974-1
Χ4	Δp lowering pressure pX4

Key features

An externally supplied LS pressure is applied to port X2. An externally supplied LR oversteering pressure is applied to port X3. An externally supplied regulating pressure pX4 is applied to port X4.

The Δp lowering is currently only available as an option for the LR - LS control.

3.2.12 LR-SD2-DA- control

HF7-DB-072

А	Working connection SAE J 518		S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1		Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg		X1	SD steering pressure

Key features

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

3.2.13 LR1-SD2-DA- control

HF7-DB-018

А	Working connection SAE J 518	Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
Fa	Auxiliary pressure connection ISO 9974-1	Xl	SD steering pressure
М	Regulated high pressure pReg	X3	LR oversteering pressure connection
S	Suction line SAE	-	-

Key features

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

An externally supplied LR oversteering pressure is applied to port X3.

3.2.14 LR-SD2-DA1- control

HF7-DB-073

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X1	SD steering pressure
X5	DA1 override signal ISO 9974-1
-	-

Key features

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

An externally supplied DA1 override signal (0-13.5 bar) is applied to port X5.

3.2.15 LR1-SD2-DA1- control

HF7-DB-074

А	Working connection SAE J 518	
Fa	Auxiliary pressure connection ISO 9974-1	
М	Regulated high pressure pReg	
S	Suction line SAE	

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X1	SD steering pressure
X3	LR oversteering pressure connection
X5	DA1 override signal ISO 9974-1

Key features

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

An externally supplied LR oversteering pressure is applied to port X3. An externally supplied DA1 override signal (0-13.5 bar) is applied to port X5.
3.2.16 LS-DA- control

HF7-DB-025

А	Working connection SAE J 518	S	Suction line SAE
Fa	Auxiliary pressure connection ISO 9974-1	Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
М	Regulated high pressure pReg	X2	LS- pressure ISO 9974-1

Key features

An externally supplied LS pressure is applied to port X2.

3.2.17 SL-SD1- control

HF7-DB-068

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X1	SD steering pressure
X7	pHD signal (other driving gear) ISO 9974-1
-	-

Key features

For two single pumps on pump distribution gear (PVG) or a multi-circuit pump, e.g. in tandem design.

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

A pHD signal supplied by the other driving gear is applied to port X7.

3.2.18 SL1-SD1- control

HF7-DB-023

А	Working connection SAE J 518
Fa	Auxiliary pressure connection ISO 9974-1
М	Regulated high pressure pReg
S	Suction line SAE

Т	Leakage oil ISO 9974-1 (e.g., for oil refuelling or draining)
X1	SD steering pressure
X3	SL steering pressure ISO 9974-1
X7	pHD signal (other driving gear) ISO 9974-1

Key features

For two single pumps on pump distribution gear (PVG) or a multi-circuit pump, e.g. in tandem design.

An externally supplied SD steering pressure is applied to port X1. The setting range is between 5 and 30 bar max., other values on request.

An externally supplied SL steering pressure is applied to port X3. A pHD signal supplied by the other driving gear is applied to port X7.

3.3 Control functions

- DA- function / pressure cut-off, see chapter 3.3.1
- DA1- function / pressure cut-off with override, see chapter 3.3.2
- EL- function / electro-proportional regulation (EL1+EL2), see chapter 3.3.3
- LR- function / hyperbolic performance regulation, see chapter 3.3.4
- LR1- function / hyperbolic performance regulation with override, see chapter 3.3.5
- LS- function / load sensing, see chapter 3.3.6
- LS1- function / load-sensing with Δp lowering, see chapter 3.3.7
- LU- function / pressure control, see chapter 3.3.8
- SD- function / steering-pressure-proportional hydraulic regulation, see chapter 3.3.9
- SL- function / total performance regulation, see chapter 3.3.10
- SL1- function / total performance regulation with override, see chapter 3.3.11

3.3.1 DA- function

Characteristic

DA pressure control minimizes or limits (cut-off) the volume flow of the axial piston unit, when a fixed high pressure value pHD is reached. Swivelling in the direction of $V_{g\,min}$ protects the hydraulic system from damage and overload.

Swivelling continues in direction $V_{g min}$ only until the volume flow of the axial piston unit exactly matches the consumer need at this pressure stage.

With its function, the pressure control ensures that the pressure is kept constant even when the volume flow in the system changes. This compensates all internal and external leakage oil losses.

XE setting range approx. 30 - 400 bar.

Options

- Additional internal design measures for vibration damping on request.
- Pressure cut-off with override function: see chapter 3.3.2
- DA control with V_{gmin} setting can be supplied. Value of the high pressure pHD* at the consumer corresponds to the value pHD _{max}, of the pressure limiting value at V_{g min}.

3.3.2 DA1- function

Characteristic

The DA1 function on the DA axle in the pressure control has the task of overriding the set DA cut-off pressure of pressure stage 1 (e.g. 250 bar) via an externally supplied steering pressure pX5-pT at port X5 and thereby increasing the high pressure to the set DA cut-off pressure of pressure stage 2 (e.g. 400 bar).

The override function DA1 thus represents a two-stage pressure cut-off with 2 pressure stages.

- Pressure stage 1, e.g.: 250 bar, or
- Pressure stage 2, e.g.: 400 bar

It is therefore suitable for systems or devices that need a controlled way to increase performance or are subject to a multiple use. Examples are working hydraulics in wheeled excavators and their driving hydraulic system.

The effective steering pressure at port X5 is the difference between the total steering pressure applied and the housing pressure.

V*) With a gain factor of 11, the DA cut-off pressure increases by approx. 11 bar if, for example, an effective, external steering pressure of 1 bar is applied to port X5. The gain factor may vary and must therefore be agreed with Liebherr in the hydraulic pump configuration.

3.3.3 EL- function

For the EL function, the displacement volume V_g of the axial piston unit is adjusted proportionally and continuously via an electromagnet. The EL function is subordinate to the DA function, i.e. the control-current-dependent EL function is only executed below the set value for the pressure cut-off.

The EL function is designed with a positive characteristic as standard.

Positive characteristic (EL1)

By adjusting the drive from $V_{g min}$ towards $V_{g max}$, the axial piston unit swivels to a larger displacement volume V_{a} with increasing steering current = I.

The high pressure pHD is applied to the adjusting piston ring area A_R , and the regulated high pressure pReg is applied to the adjusting piston bottom area A_B . If pReg x A_B is larger than pHD x A_R , the adjusting piston moves and swivels the axial piston unit towards $V_{g max}$.

The hydraulic fluid required for this purpose is taken from high pressure pHD. At low high pressure of pHD < 30 bar, the Fa port must be supplied with auxiliary pressure of approx. 30 bar to ensure that regulation is possible.

If the activating signal is missing or defective, the axial piston unit swivels to V_{a min}.

Negative characteristic (EL2)

If the EL function is designed with a negative characteristic, the axial piston unit swivels towards a larger displacement volume V_g as the control current I decreases. The high pressure pHD is applied to the adjusting piston ring area A_R , and the regulated high pressure pReg is applied to the adjusting piston bottom area A_B .

If pReg x A_B is larger than pHD x A_R, the adjusting piston moves and swivels the axial piston unit towards V_{g max}. The hydraulic fluid required for this purpose is taken from high pressure pHD.

At low high pressure of pHD < 30 bar, the Fa port must be supplied with auxiliary pressure of approx. 30 bar to ensure that regulation is possible.

If the activating signal is missing or defective, the axial piston unit swivels to $V_{g max}$.

Thus the EL function with negative characteristic is suitable, for example, as a safety feature for fan drives. See chapter 3.2.1

3.3.4 LR- function

Characteristic

The LR function adjusts the flow rate V_g (volume flow) of the axial piston unit, depending on the pump high pressure pHD (the capacity reduction), to the performance characteristic of the drive motor while limiting the flow at a constant speed n.

Optimal performance utilisation is achieved, if the regulation runs along the hyperbolic characteristic. When regulation of the axial piston unit starts, the working pressure pHD in the system rises to the pressure at regulation start.

This increases the force at the measuring piston 2 to lever 5. The spool 14 is moved against the pressure spring 23 and opens the connection of the adjusting chamber pReg to the tank T via a steering cam S2.

The axial piston unit thus swivels back towards $V_{g\ min}$. By swivelling back the axial piston unit, the connecting pin 95 in the swivel yoke bearing bolt pushes the return piston 11 axially against the pressure spring 22. This also shifts the force line of the measuring piston 2 on the lever 5 in the direction of pivot point D.

The force of the lever 5 on the spool 14 becomes smaller, so that the pressure spring 23 pushes the spool 14 back into the neutral position. The connection of the adjusting chamber pReg to the tank T is interrupted. The axial piston unit stops at a constant flow rate that corresponds to a constant performance decrease at the existing high pressure pHD.

Options

Combination with other control types Override LR1

3.3.5 LR1- function

Characteristic

Override: The external control pressure pX3 is directed to the LR control axis via port X3 and acts against a measuring piston in addition to the spring force of the LR control. To maintain the force balance, the axial piston unit swivels towards $V_{g\ max}$ to a higher performance level.

The load limiting regulation is independent of the drive motor speed.

With increasing regulating pressure pX3, the pressure for starting the regulation of the axial piston unit increases proportionally.

To stabilise the control loop, oil is discharged continuously through a nozzle from the LR steering pressure into the pump housing.

3.3.6 LS- function

Characteristic

The dynamic characteristics of the control system of variable hydraulic pumps can be further improved by load sensing (LS) systems, such as an EL/LS control. The LS function is designed as a so-called load pressure reporting system that adjusts the pressure and volume flow to the current requirements of one or more consumers.

An external steering pressure pump provides the auxiliary pressure (30 bar) via the inputs FA. Through a shuttle valve, either the high pressure pHD or the 30 bar auxiliary pressure, depending on the pressure level, is provided for regulating the pump.

The volume flow of the axial piston unit depends on the cross section of an external measuring orifice. A larger cross-section results in regulating the pump towards $V_{g max}$. With a constant cross-section of the measuring orifice, the volume flow is independent of the required high pressure of the consumer (pLS).

The highest high pressure pLS occurring in the system in the lines to the actuators at port X2 is fed back to the LS control of the axial piston unit and compared against the high pressure pHD. The control ensures a constant Δ pLS value (pHD minus pLS), as it has been set previously.

During control (one consumer actuated), the spool 20 of the LS control is pressurised on one side by the high pressure pHD and on the opposite side by the consumer-side pressure (LS pressure via port X2) and the pressure spring 39 (Δ p setting). The pressure ratio at the adjusting piston 2 determines its position and thus the pressurisation of the adjusting piston on the piston bottom.

The adjusting pressure pReg applied to the adjusting piston bottom area A_B acts against the high pressure pHD applied to the adjusting piston ring area A_R . The axial piston unit is regulated between Q_{min} and Q_{max} as required.

Options

Combination with other control types Δp lowering (LS1 control)

3.3.7 LS1- function

Characteristic

An active Δp lowering aims at reducing the flow rate. As a result, the hydraulic system is temporarily less sensitive to the operation of the pilot control unit.

The external control pressure pX4-pT is directed to control 1 via port X4 and acts against the spring force of LS axle 3. The set pressure difference Δp -LS thus decreases and the axial piston unit is able to maintain this reduced Δp -LS at a lower flow rate (corresponds to a smaller swivel angle). With increasing external regulating pressure pX4-pT at port X4, the flow rate is further reduced.

3.3.8 LU- function

Characteristic

The LU function generates a constant pressure source whose pressure level pReg can be set infinitely variably by a specified, variable magnet current. The LU function is designed as a so-called load pressure reporting system that adjusts the pressure and volume flow to the current requirements of a consumer.

The axial piston unit swivels with decreasing steering current I towards a larger displacement volume V_g . The high pressure pHD is applied to the adjusting piston ring area A_R , and the regulated high pressure pReg is applied to the adjusting piston bottom area A_B .

If pReg x A_B is larger than pHD x A_R , the adjusting piston moves and swivels the axial piston unit towards $V_{g max}$. The hydraulic fluid required for this purpose is taken from high pressure pHD. At low high pressure, i.e. pHD < 30 bar, the Fa port must be supplied with auxiliary pressure of approx. 30 bar to ensure that regulation is possible.

If the activating signal is missing or defective, the axial piston unit swivels to V_{g max}.

To protect the hydraulic product, the pressure control limits the high pressure pHD to a fixed set value, e.g. in the event of a power failure.

3.3.9 SD- function

SD regulation is suitable for applications that require proportional regulation of the volume flow.

Positive characteristic (SD1)

By adjusting the drive from $V_{g min}$ towards $V_{g max}$, the axial piston unit swivels to a larger displacement volume V_{g} with increasing SD steering pressure. The high pressure pHD is applied to the adjusting piston ring area A_{R} , and the regulated high pressure pReg is applied to the adjusting piston bottom area A_{B} .

If pReg x A_B is larger than pHD x A_R , the adjusting piston moves and swivels the axial piston unit towards $V_{g max}$. The hydraulic fluid required for this purpose is taken from high pressure pHD. At a low high pressure of pHD < 30 bar, the Fa port must be supplied with auxiliary pressure of approx. 30 bar to ensure that regulation is possible. If the activating signal is missing or defective, the axial piston unit swivels to $V_{g min}$.

If the SD function is designed with a negative characteristic, the axial piston unit swivels towards a larger displacement volume V_g as the SD steering pressure decreases. The high pressure pHD is applied to the adjusting piston ring area A_R , and the regulated high pressure pReg is applied to the adjusting piston bottom area A_B .

If pReg x A_B is larger than pHD x A_R, the adjusting piston moves and swivels the axial piston unit towards V_{g max}. The hydraulic fluid required for this purpose is taken from high pressure pHD.

At a low high pressure of pHD < 30 bar, the Fa port must be supplied with auxiliary pressure of approx. 30 bar to ensure that regulation is possible. If the activating signal is missing or defective, the axial piston unit swivels to $V_{g\,max}$.

Date: 04.2023 Version: 1.4 ID No.: 10150821

3.3.10 SL- function

The SL function represents a performance regulation to regulate the flow rate of two identical, adjustable axial piston units that are driven by a common power source and deliver into two different circuits with different pressures.

Each of the axial piston units has its own control; these are hydraulically coupled (port X7) and have total performance regulation. If the pumps are in SL regulation, their speed, their swivel angle and thus the flow rate are identical.

Each total pressure is associated with a certain swivel angle. Though, in regulating, the volume flows of both axial piston units are reduced by the same amount, the pressures can increase up to the performance limits.

The sum of the two hydraulic performances should not exceed the installed drive power.

The SD function for SL-SD regulation is available only with a positive characteristic. It limits the maximum flow rate for each axial piston unit individually.

Options

Override (SL1 function)

3.3.11 SL1- function

Override: The external control pressure pX3 is directed to the SL control axis via port X3 and acts against a measuring piston in addition to the spring force. To maintain the force balance, the axial piston unit swivels towards $V_{a\,min}$ to a lower performance level.

With increasing regulating pressure pX3, the pressure for starting the regulation of the axial piston unit decreases proportionally.

To stabilise the control loop, oil is discharged continuously through a nozzle from the regulating pressure pX3 into the pump housing.

3.4 Electrical components

3.4.1 Proportional magnet (variant A)

DB-DPVO-156

General information

Technical data of proportional magnet		
Rated voltage U	24 V	
Current I _{max.}	700 mA	
PWM frequency	100 -160Hz	
Protection class according to DIN VDE0470 when assembled and connected	max. IP 65	
AMP JUNIOR TIMER plug-in terminal, 2-pin	-	

3.4.2 Proportional magnet (variant B)

General information

Technical data of proportional magnet	
Rated voltage U	24 V
Current I _{max.}	700 mA
PWM frequency	100 -160Hz
Protection class according to DIN VDE0470 when assembled and connected	max. IP 67
Nominal pressure, static	350 bar
AMP JUNIOR TIMER plug-in terminal, 2-pin	-

3.4.3 Pressure control valve (DRE)

Т	Tank	PS	Output DRE
PP	Input DRE	E	Connection AMP Junior Timer

General information

echnical data of pressure control valve	
Rated voltage U	24 V
Current I _{max.}	750 mA
Supply pressure p _{max.}	50 bar
Magnet characteristic curve: flat around the regulating position	-
AMP JUNIOR TIMER plug-in terminal, 2-pin	-

3.4.4 Sensors

	Technic	cal data	
Variant A	Variant A Variant B		
Rated voltage U	5 V	Rated voltage U	8-30 V
Measuring range	-27° to +27°	Measuring range	-27° to +27°
Output signal -27° 0° +27°	0.5 VDC 2.5 VDC 4.5 VDC	Output signal -27° 0° +27°	4 mA 12 mA 20 mA
Working temperature	-40 °C to +125 °C	Working temperature	-40 °C to +85 °C
	Deutsch DT04-3P elec	ctrical plug-in terminal	

The angle sensor cannot be retrofitted and must be included when planning the DPVO project. Dimensions for variant A and B are identical; specify desired variant when ordering.

Note

4.1 General information about project planning

The installation variant for the device or system must be coordinated with Liebherr, as well as the installation position, at the conceptual design stage of the axial piston unit and must be approved by Liebherr.

ATTENTION

Damage of the hydraulic product.

Lack of lubrication on the hydraulic product!

- Make sure that the following requirements are observed:
- Comply with the approved installation positions for the hydraulic product.
- For other installation positions, contact Liebherr customer service.
 - Housing is completely filled with hydraulic fluid during commissioning and operation.
 - Housing is vented after commissioning and during operation.

Liebherr distinguishes between three installation variants for axial piston units:

A: Under-the-tank installation (axial piston unit is installed **under** the minimum liquid level of the tank) B: Over-the-tank installation (axial piston unit is installed **above** the minimum liquid level of the tank) C: Tank installation (axial piston unit is installed **in** the tank)

Liebherr distinguishes between two installation positions for axial piston units:

1/3/5/7/9/11: Driving shaft horizontal 2/4/6/8/10/12: Driving shaft vertical

Note Liebherr recommends: Installation variant: Under-the-tank installation A Installation location: 1/3/5/7/9/11 Driving shaft horizontal with "control at top"

*) For installation positions 2/4/6/8 with driving shaft vertical and 1/3/5/7 with driving shaft horizontal with "control at bottom", complete filling and venting is critical. The axial piston unit must then be connected, filled and vented before final positioning in installation position 1/3/5/7/9 "control at top". It can then be rotated to the final installation position 2/4/6/8 driving shaft vertical or 1/3/5/7 driving shaft horizontal with "control at bottom".

On some axial piston units, an additional T4 leakage oil connection is provided for the installation positions 2/4/6/8 driving shaft vertical and 1/3/5/7 driving shaft horizontal with control at bottom: Order leakage oil connection T4 as special design. (For additional information see: 1 Type code, page 3)

4.1.1 Suction line

Given the laws of physics and under simple assumptions about the hydraulic fluid, temperature and ambient pressures, the maximum suction head is 750 mm. This applies in particular to installation variant B: over-the-tank installation.

At low temperatures with high viscosities, it is essential to observe the minimum suction pressure for axial piston units. (For additional information see: 2.3.2 Housing, leakage oil pressure, page 10)

The suction line must open into the tank at a minimum distance of 115 mm from the tank bottom to prevent particles of dirt in the tank from being sucked in.

The suction line must open into the tank at a maximum distance from the leakage oil line to prevent hot leakage oil from being sucked in directly.

4.1.2 Leakage oil lines

To prevent draining of the axial piston unit during long downtimes, the leakage oil line must be routed in a bend so that it runs at the minimum dimension $\ddot{U}1 = 30$ mm above the highest possible level of the axial piston unit. This applies in particular to installation variant B: over-the-tank installation.

Connect the leakage oil line to the top leakage oil connection T1, T2, T3....Tx depending on the installation position.

The leakage oil line must open into the tank at a minimum distance of 115 mm from the tank bottom to prevent stirring up dirt particles in the tank.

The leakage oil line must open into the tank at a minimum distance of 250 mm below the minimum liquid level to prevent foaming in the tank.

The leakage oil line must open into the tank at a maximum distance from the suction line to prevent hot leakage oil from being sucked in directly.

At low temperatures with high viscosities, it is essential to observe the maximum housing pressure for axial piston units with multiple driving gears and with a shared leakage oil line. (For additional information see: 2.3.2 Housing, leakage oil pressure, page 10) If the maximum housing pressure is outside the tolerance limit, a separate leakage oil line must be connected for each driving gear.

4.1.3 Hydraulic fluid tank

Design the hydraulic fluid tank so that the hydraulic oil cools off sufficiently during circulation and impurities that develop during operation settle to the bottom of the tank.

Make sure that the lines are connected according to recommendations and that they open into the hydraulic fluid tank. (For additional information see: 4.1.1 Suction line, page 55 and For additional information see: 4.1.2 Leakage oil lines, page 56)

4.2 Installation variants

4.2.1 Under-the-tank installation variant

Note Liebherr recommends: Under-the-tank installation A, so that:

- There is hydraulic fluid at suction port S when not operated.

- The housing cannot empty to the tank.

T Tank

(T4 = optional)

Τ_

Leakage oil connections T1 / T2 / T3 / T4

E Minimum immersion depth = 250 mm

scope of delivery)

D

Fill and vent connection (external, not included in

4.2.2 Over-the-tank installation variant

ATTENTION

Damage of the hydraulic product.

The air cushion in the bearing area or on the rotary shaft lip seal "runs hot" in over-the-tank installation position (installation variant B)! Make sure that the following requirements are observed:

- Housing is completely filled with hydraulic fluid during commissioning and operation.
 Housing is vented after commissioning and during operation.
- Note

To prevent draining of the axial piston unit during long shutdowns, the leakage oil line must be routed in a bend so that it runs at the minimum dimension $\ddot{U}I = 30$ mm above the highest possible level of the axial piston unit.

D	Fill and vent connection (external, not included in scope of delivery)	Т	Tank
E	Minimum immersion depth = 250 mm	T_	Leakage oil connections T1 / T2 / T3 / T4 (T4 = optional)
Н	Maximum suction head = 750 mm	Ü1	Minimum leakage oil line height = 30 mm

4.2.3 Tank installation variant

Note

For tank installation variant C, the hydraulic product must be ordered and used as a special design without primer. (For additional information see: 1 Type code, page 3) This tank installation variant is not permitted for axial piston units with electrical components (for example: electro-proportional magnet)

L	Leakage oil connections	-
М	Minimum distance of the ends of the lines to the bottom of the tank	115 mm
S	Suction line connection	-
Т	Tank	-

5.1 Nominal size 108, clockwise rotation

5.1.1 Nominal size 108, LR-LS- and LR1-LS control type

6000 psi

S	Suction port SAE J 518 - 2 1/2", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.1.2 Nominal size 108, other control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.1.

Note X3 can be connected only to LR1 X4 can be connected only to LS1 X5 can be connected only to DA1

5.2 Nominal size 108, mounting flange

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.
-															

SAE D (SAE J744)

Diesel engine flange SAE 2 / SAE 4 (SAE J617)

9.5 27 10.5 7.3 49.5 49.5 301,5 301,5

HF7-DB-046

24

12

5.3 Nominal size 108, shaft end

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

HF7-DB-047

DIN 5480 splined shaft W40x2x18x9g

1

5.4 Nominal size 140, clockwise rotation

5.4.1 Nominal size 140, LR-LS- and LR1-LS control type

HF7-DB-076

А	Working connection SAE J 518 - 1 1/4", 6000 psi
S	Suction port SAE J 518 - 3", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

T1, T2	Leakage oil connection M26x1.5
Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.4.2 Nominal size 140, other control types

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.4.

Note

X3 can be connected only to LR1

X4 can be connected only to LS1

X5 can be connected only to DA1

5.5 Nominal size 140, mounting flange

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

SAE D (SAE J744)

i

24

HF7-DB-084

Diesel engine flange SAE 2 / SAE 4 (SAE J617)

HF7-DB-085

HF7-DB-086

HF7-DB-087

5.6 Nominal size 140, shaft end

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

DIN 5480 splined shaft W45x2x21x9g

1

12

14

ANSI B92.1a splined shaft 1 3/4 in 13T 8/16 DP

HF7-DB-141

2

5.7 Nominal size 165, clockwise rotation

5.7.1 Nominal size 165, LR-LS- and LR1-LS control type

А	Working connection SAE J 518 - 1 1/4", 6000 psi
S	Suction port SAE J 518 - 3", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

T1, T2	Leakage oil connection M26x1.5
Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.7.2 Nominal size 165, other control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.7.

Note 1

X3 can be connected only to LR1 X4 can be connected only to LS1 X5 can be connected only to DA1

5.8 Nominal size 165, mounting flange clockwise rotation

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

SAE D (SAE J744)

24

HF7-DB-098
Diesel engine flange SAE 2 / SAE 4 (SAE J617)

HF7-DB-099

HF7-DB-100

12

14

5.9 Nominal size 165, anti-clockwise rotation

5.9.1 Nominal size 165, LR-LS- and LR1-LS control

 $\overline{\oplus}$

Φ

T2

270,3

61,9

95,3

31,8

HF7-DB-101

104

VIEW Z

106.4

ø75

S

M19 0801

81,5

А	Working connection SAE J 518 - 1 1/4", 6000 psi
S	Suction port SAE J 518 - 3", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

T1, T2	Leakage oil connection M26x1.5
Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.9.2 Nominal size 165, other control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.9.

Note

X3 can be connected only to LR1 X4 can be connected only to LS1 X5 can be connected only to DA1

5.10 Nominal size 165, mounting flange anti-clockwise rotation

1. 2. 3 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	14.	15.

SAE D (SAE J744)

24

12

14

Diesel engine flange SAE 2 / SAE 4 (SAE J617)

HF7-DB-110

5.11 Nominal size 165, shaft end

5.12 Nominal size 215, clockwise rotation

5.12.1 Nominal size 215, LR-LS- and LR1-LS control type

А	Working connection SAE J 518 - 1 1/2", 6000 psi
S	Suction port SAE J 518 - 3 1/2", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

T1, T2	Leakage oil connection M33x2 / M26x1.5
Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.12.2 Nominal size 215, other control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.12.

Note

5.13 Nominal size 215, mounting flange

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

SAE E (SAE J744)

Ĩ

HF7-DB-122

25

Diesel engine flange SAE 2 (SAE J617)

12

5.14 Nominal size 215i, anti-clockwise rotation

5.14.1 Nominal size 215i, LR-LS- and LR1-LS control type

А	Working connection SAE J 518 - 1 1/2", 6000 psi
S	Suction port SAE J 518 - 3 1/2", 500 psi
Ml	Regulated high pressure measuring port Minimess M16
M2	High-pressure measuring port Minimess M16

T1, T2	Leakage oil connection M33x2
Fa	Filter output M16x1.5 (30 bar)
X2	LS pressure connection ISO 9974-1 - M12x1.5
X3	LR oversteer pressure ISO 9974-1 - M12x1.5

5.14.2 Nominal size 215i, other control types

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

X

ш

Note

Dimensions of control types LR - LS and LR1 - LS, see chapter 5.14.

Note

5.15 Nominal size 215i, mounting flange

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

SAE E (SAE J744)

i

HF7-DB-134

25

Diesel engine flange SAE 2 (SAE J617)

5.16 Nominal sizes 215 and 215i, shaft end

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

HF7-DB-135

DIN 5480 splined shaft W50x2x24x9g

ANSI B92.1a splined shaft 1 3/4 in 13T 8/16 DP

1

2

ANSI B92.1a splined shaft 2 in 15T 8/16 DP

2

5.17 Through-drive ANSI B92.1a

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

5.17.1 SAE B / ANSI B92.1a-1976 7/8" 13T 16/32 DP

B11D	2-hole
B12D	4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
108	12	13	35.1	45.1	291	M12x1.75; 18 deep	M12x1.75; 18 deep
140	12	15	33	43	312	M12x1.75; 18 deep	M12x1.75; 18 deep
165	12	16	34	44	325.3	M12x1.75; 19 deep	M12x1.75; 19 deep
215	12	12.5	33.5	44.5	355	M12x1.75; 18 deep	M12x1.75; 18 deep
215i	11	12	43.2	58	429	M12x1.75; 20 deep	M12x1.75; 20 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

Option: Vertical threaded holes

5.17.2 SAE BB / ANSI B92.1a-1976 1" 15T 16/32 DP

B21D 2-hole **B22D** 4-hole

NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
108	12	13	38	50	291	M12x1.75; 18 deep	M12x1.75; 18 deep
140	12	13	37.9	49.9	312	M12x1.75; 18 deep	M12x1.75; 18 deep
165	12	14	38.9	50.9	325.3	M12x1.75; 19 deep	M12x1.75; 19 deep
215	12	12.5	37.5	49.5	355	M12x1.75; 18 deep	M12x1.75; 18 deep
215i	11	12	44.5	58	429	M12x1.75; 20 deep	M12x1.75; 20 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery) Option: Vertical threaded holes

5.17.3 SAE C / ANSI B92.1a-1976 1 1/4" 14T 12/24 DP

C11D	2-hole

C12D 4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
108	А	А	А	А	А	А	А
140	А	А	А	А	А	А	А
165	15	17	48.4	60.4	349.3	M16x2; 24 deep	M12x1.75; 24 deep
215	18	18	47.5	59.5	401	M16x2; 28 deep	M12x1.75; 28 deep
215i	18	16	58	58	429	M16x2; 24 deep	M12x1.75; 24 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery) Option: Vertical threaded holes

5.17.4 SAE CC / ANSI B92.1a-1976 1 1/2" 17T 12/24 DP

C21D 2-hole **C22D** 4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
108	А	А	А	А	А	А	А
140	А	А	А	А	А	А	А
165	15	17	54.8	66.8	349.3	M16x2; 24 deep	M12x1.75; 24 deep
215	18	18	53.5	65.5	401	M16x2; 28 deep	M12x1.75; 28 deep
215i	18	18	66	66	437	M16x2; 24 deep	M12x1.75; 24 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery) Option: Vertical threaded holes

5.17.5 SAE D / ANSI B92.1a-1976 1 3/4" 13T 8/16 DP

D11D 2-hole

D12D 4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
108	А	А	А	А	А	А	А
140	А	А	А	А	А	А	А
165	А	А	А	А	А	А	А
215	14	22	66.5	78.5	414	M20x2.5; 41 deep	M20x2.5; 41 deep
215i	14	22	75	78.5	449.5	M20x2.5; 25 deep	M20x2.5; 25 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

5.17.6 SAE E / ANSI B92.1a-1976 1 3/4" 13T 8/16 DP

E11D	2-hole
E12D	4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
215	А	А	А	А	А	А	А
215i	А	А	А	А	А	А	А

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

A = available on request

5.18 Through-drive DIN 5480

DPV	0		/			1				Α				0	
1.	2.	3		4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.

5.18.1 SAE D / W40x2x18x9g / DIN 5480

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

5.18.2 SAE D / W45x2x21x9g / DIN 5480

2 D41D 2-hole 2* D42D 4-hole D43D 2- and 4-hole 0 W1 W2 W3 W4 L

	NS	W1	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
	140	А	А	А	А	А	А	А
	165	А	А	А	А	А	А	А
	215	14	19.2	57.2	69.2	414	M20x2.5; 41 deep	M20x2.5; 41 deep
5	215i	14	17.7	60.2	71.2	442.2	M20x2.5; 44.2 deep	M20x2.5; 44.2 deep

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

5.18.3 SAE E / W50x2x24x9g / DIN 5480

E31D 2-hole

E32D 4-hole

NS	Wl	W2	W3	W4	L	G1 (2-hole)	G2 (4-hole)
215	А	А	А	А	А	А	А
215i	А	А	А	А	А	А	А

L*) up to mounting flange

2*) O-ring (included in the scope of delivery)

5.19 Multiple unit in tandem design

General information

Multi inline axial piston units of two or more single units can be supplied on request. In this case, the base axial piston pump P1 must be connected with another axial piston pump P2 through an adapter plate 10 and a coupling ferrule 11.

The type code must be filled out separately for each single unit. An abbreviated type designation on an additional type plate is used to identify the multi-unit.

P1	Base pump
P2	Mounting pump
L	Multi-unit overall length in mm

10	Adapter
11	Coupling ferrule
-	-

Note

Multi-units consisting of three single pumps can be realised on request.

Total length L valid for tandem combinations with drive shaft pump 2 = DIN 5480.

5.19.1 Dimensions of the multi-unit in tandem design

NSP1	NS P2							
	108	140	165	215				
108	🗖 (L = 621)	-	-	-				
140	🗖 (L = 642)	🗖 (L = 663)	-	-				
165	🗖 (L = 640.3)	🗖 (L = 661.3)	■ (L = 674.6)	-				
215	□ (L = 705)	□ (L = 726)	🗖 (L = 739.3)	□ (L = 787)				

= Available

□ = On request

- = Not possible
- L = Total length in mm

Changes, conditions, copyright

Subject to changes without prior notice in the course of technical development.

All texts, images, graphics, tables and other illustrations and their layout are protected by copyright. The contents of this catalogue may not be copied, distributed, modified or made available to third parties without the express written consent of Liebherr Machines Bulle SA. Some of the images in this data sheet are subject to third-party copyright.

The information in this data sheet does not release the users from the obligation to complete their own assessments and tests. The content has been prepared with the greatest possible care. Nevertheless, no guarantee can be given for the information provided being accurate, complete or up-to-date.

The data sheet mostly shows an example configuration, unless otherwise stated. The product delivered to you may therefore differ from the illustrations. Data and values may also deviate. Such data and values are provided only for the purpose of selecting the product configuration and are not binding. Therefore, use the values from the installation drawing provided to you.

Warranty and liability conditions under the general terms and conditions of the relevant Liebherr business partner are not extended by the above information.

The latest versions of Liebherr's data sheets are available on our website at https://www.liebherr.com.

Do you have any questions? Get in touch with your contact for further information.